题目链接

题目描述

给你一个长为N的字符串,求不同的子串的个数

我们定义两个子串不同,当且仅当有这两个子串长度不一样 或者长度一样且有任意一位不一样。

子串的定义:原字符串中连续的一段字符组成的字符串

说明

对于100%的数据,N≤10^5

思路

能发现任何一个子串都是某一个后缀的前缀

实际上就是求所有后缀有多少本质不同的前缀

我们考虑按照将所有后缀按照字典序排序,那么每次新加进来的一个后缀的前缀的个数为 \(n-sa[i]+1\),但是与前面重复的前缀有 \(H[i]\) 个

因为对于 \(sa[i]\),它与前面的所有后缀的最长公共前缀就是它与 \(sa[i-1]\) 的最长公共前缀,所以重复的前缀有 \(H[i]\) 个

我们把后缀 \(sa[i ]\) 和后缀 \(sa[i - 1]\) 公共前缀看成是 \(i-1\) 所独有的子串,那么答案就是 \(\sum_{i}n-sa[i]+1-H[i]\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1000010
#define ll long long
using namespace std; int n;
char s[maxn]; int tax[maxn], tp[maxn], sa[maxn], rk[maxn], M = 122;
void rsort() {
for (int i = 0; i <= M; ++i) tax[i] = 0;
for (int i = 1; i <= n; ++i) ++tax[rk[i]];
for (int i = 1; i <= M; ++i) tax[i] += tax[i - 1];
for (int i = n; i; --i) sa[tax[rk[tp[i]]]--] = tp[i];
} int c1, H[maxn];
void SA() {
for (int i = 1; i <= n; ++i) rk[i] = s[i], tp[i] = i;
rsort();
for (int k = 1; k < n; k *= 2) {
if (c1 == n) break; M = c1; c1 = 0;
for (int i = n - k + 1; i <= n; ++i) tp[++c1] = i;
for (int i = 1; i <= n; ++i) if (sa[i] > k) tp[++c1] = sa[i] - k;
rsort(); swap(tp, rk); rk[sa[1]] = c1 = 1;
for (int i = 2; i <= n; ++i) {
if (tp[sa[i - 1]] != tp[sa[i]] || tp[sa[i - 1] + k] != tp[sa[i] + k]) ++c1;
rk[sa[i]] = c1;
}
}
int lcp = 0;
for (int i = 1; i <= n; ++i) {
if (lcp) --lcp;
int j = sa[rk[i] - 1];
while (s[j + lcp] == s[i + lcp]) ++lcp;
H[rk[i]] = lcp;
}
} ll ans;
int main() {
scanf("%d%s", &n, s + 1); SA();
for (int i = 1; i <= n; ++i) ans += n - sa[i] + 1 - H[i];
cout << ans << endl;
return 0;
}

【后缀数组】【LuoguP2408】 不同子串个数的更多相关文章

  1. [spoj DISUBSTR]后缀数组统计不同子串个数

    题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank ...

  2. SPOJ SUBST1 New Distinct Substrings(后缀数组 本质不同子串个数)题解

    题意: 问给定串有多少本质不同的子串? 思路: 子串必是某一后缀的前缀,假如是某一后缀\(sa[k]\),那么会有\(n - sa[k] + 1\)个前缀,但是其中有\(height[k]\)个和上一 ...

  3. SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)

    DISUBSTR - Distinct Substrings no tags  Given a string, we need to find the total number of its dist ...

  4. SPOJ(后缀数组求不同子串个数)

    DISUBSTR - Distinct Substrings Given a string, we need to find the total number of its distinct subs ...

  5. [TyvjP1515] 子串统计 [luoguP2408] 不同子串个数(后缀数组)

    Tyvj传送门 luogu传送门 经典题 统计一个字符串中不同子串的个数 一个字符串中的所有子串就是所有后缀的前缀 先求出后缀数组,求出后缀数组中相邻两后缀的 lcp 那么按照后缀数组中的顺序遍历求解 ...

  6. luoguP2408不同子串个数

    传送门 可以知道每一个子串都是后缀的前缀,那么对于第\(i\)小的后缀的贡献就可以表示为n-sa[i]+1 然而会存在重复的子串,注意height数组的定义,对于sa[i-1]和sa[i],只有hei ...

  7. SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解

    题意: 给定一个串\(s\),\(s\)必有一个最大循环节的连续子串\(ss\),问最大循环次数是多少 思路: 我们可以知道,如果一个长度为\(L\)的子串连续出现了两次及以上,那么必然会存在\(s[ ...

  8. spoj705 后缀数组求不同子串的个数

    http://www.spoj.com/problems/SUBST1/en/  题目链接 SUBST1 - New Distinct Substrings no tags  Given a stri ...

  9. spoj 694. Distinct Substrings 后缀数组求不同子串的个数

    题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...

  10. 【Poj-3693】Maximum repetition substring 后缀数组 连续重复子串

    POJ - 3693 题意 SPOJ - REPEATS的进阶版,在这题的基础上输出字典序最小的重复字串. 思路 跟上题一样,先求出最长的重复次数,在求的过程中顺便纪录最多次数可能的长度. 因为sa数 ...

随机推荐

  1. Bash速查表

    例 #!/usr/bin/env bash NAME="John" echo "Hello $NAME!" 变量 NAME="John" e ...

  2. 解决本地Bootstrap字体图标不可见的问题

    原文:https://www.jianshu.com/p/70ac459d33e7 作为Bootstrap的初学者,我最近遇到了一个问题:在使用Bootstrap字体图标时,图标不可见.使用代码如下: ...

  3. Win10家庭版升级到企业版的方法

    一.家庭版升级企业版 1.右键单击[此电脑]——>属性 2.点击更改产品密钥 3.输入密钥:NPPR9-FWDCX-D2C8J-H872K-2YT43 4.点击下一步,验证结束后点击开始升级,然 ...

  4. Ubuntu中使用sanp一键安装安装Notepad ++

    很少有文本编辑器像Notepad ++一样流行得到广大用户的喜爱,Notepad ++是一个免费的开源代码编辑器,专为Windows构建,用C ++编写.以其小巧的应用程序大小和出色的性能而闻名,但缺 ...

  5. Java visualvm

    简介 VisualVM是一个集成多个JDK命令行工具的可视化工具.可以作为Java应用程序性能分析和运行监控的工具.开发人员可以利用它来监控.分 析线程信息,浏览内存堆数据.系统管理员可以利用它来监测 ...

  6. Matlab迭代器模式

    迭代器(Iterator)模式,又叫做游标(Cursor)模式.提供一种方法访问一个容器(container)或者聚集(Aggregator)对象中各个元素,而又不需暴露该对象的内部细节.在采用不同的 ...

  7. 79.mobile/js---手机端分享调用功能的实现(只能在真机上测试有效)

    html:<a href="javascript:void(0);" class="all-share" onclick="call('defa ...

  8. poll_wait阻塞/唤醒

    1. 应用阻塞 应用程序使用 select() 或 poll() 调用设备驱动程序的 poll() 函数,该函数把输入输出复用处理的等待队列追加到由内核管理的进程的 poll_table()上 #in ...

  9. java程序员常用的cmd命令

    1.查看端口号或者进程号使用情况 1.1.查看所有端口占用情况 C:\Users\Administrator>netstat -ano 活动连接 协议 本地地址 (ip:端口) 外部地址 状态 ...

  10. nodejs SSL Error: CERT_UNTRUSTED while using npm command 错误

    SSH 使用错误,其实我们关掉HTTPS就好了 npm config set strict-ssl false 或者 npm config set registry="http://regi ...