什么是Java内存模型
转载 : https://www.jianshu.com/p/bf158fbb2432
在知识星球中,有个小伙伴提了一个问题:
有一个关于JVM名词定义的问题,说”JVM内存模型“,有人会说是关于JVM内存分布(堆栈,方法区等)这些介绍,也有地方说(深入理解JVM虚拟机)上说Java内存模型是JVM的抽象模型(主内存,本地内存)。这两个到底怎么区分啊?有必然关系吗?比如主内存就是堆,本地内存就是栈,这种说法对吗?
时间久了,我也把内存模型和内存结构给搞混了,所以抽了时间把JSR133规范中关于内存模型的部分重新看了下。
后来听了好多人反馈:在面试的时候,有面试官会让你解释一下Java的内存模型,有些人解释对了,结果面试官说不对,应该是堆啊、栈啊、方法区什么的(这不是半吊子面试么,自己概念都不清楚)
JVM中的堆啊、栈啊、方法区什么的,是Java虚拟机的内存结构,Java程序启动后,会初始化这些内存的数据。

内存结构就是上图中内存空间这些东西,而Java内存模型,完全是另外的一个东西。
什么是内存模型
在多CPU的系统中,每个CPU都有多级缓存,一般分为L1、L2、L3缓存,因为这些缓存的存在,提供了数据的访问性能,也减轻了数据总线上数据传输的压力,同时也带来了很多新的挑战,比如两个CPU同时去操作同一个内存地址,会发生什么?在什么条件下,它们可以看到相同的结果?这些都是需要解决的。
所以在CPU的层面,内存模型定义了一个充分必要条件,保证其它CPU的写入动作对该CPU是可见的,而且该CPU的写入动作对其它CPU也是可见的,那这种可见性,应该如何实现呢?
有些处理器提供了强内存模型,所有CPU在任何时候都能看到内存中任意位置相同的值,这种完全是硬件提供的支持。
其它处理器,提供了弱内存模型,需要执行一些特殊指令(就是经常看到或者听到的,memory barriers内存屏障),刷新CPU缓存的数据到内存中,保证这个写操作能够被其它CPU可见,或者将CPU缓存的数据设置为无效状态,保证其它CPU的写操作对本CPU可见。通常这些内存屏障的行为由底层实现,对于上层语言的程序员来说是透明的(不需要太关心具体的内存屏障如何实现)。

前面说到的内存屏障,除了实现CPU之前的数据可见性之外,还有一个重要的职责,可以禁止指令的重排序。
这里说的重排序可以发生在好几个地方:编译器、运行时、JIT等,比如编译器会觉得把一个变量的写操作放在最后会更有效率,编译后,这个指令就在最后了(前提是只要不改变程序的语义,编译器、执行器就可以这样自由的随意优化),一旦编译器对某个变量的写操作进行优化(放到最后),那么在执行之前,另一个线程将不会看到这个执行结果。
当然了,写入动作可能被移到后面,那也有可能被挪到了前面,这样的“优化”有什么影响呢?这种情况下,其它线程可能会在程序实现“发生”之前,看到这个写入动作(这里怎么理解,指令已经执行了,但是在代码层面还没执行到)。通过内存屏障的功能,我们可以禁止一些不必要、或者会带来负面影响的重排序优化,在内存模型的范围内,实现更高的性能,同时保证程序的正确性。
下面看一个重排序的例子:
Class Reordering {
  int x = 0, y = 0;
  public void writer() {
    x = 1;
    y = 2;
  }
  public void reader() {
    int r1 = y;
    int r2 = x;
  }
}
假设这段代码有2个线程并发执行,线程A执行writer方法,线程B执行reader方法,线程B看到y的值为2,因为把y设置成2发生在变量x的写入之后(代码层面),所以能断定线程B这时看到的x就是1吗?
当然不行! 因为在writer方法中,可能发生了重排序,y的写入动作可能发在x写入之前,这种情况下,线程B就有可能看到x的值还是0。
在Java内存模型中,描述了在多线程代码中,哪些行为是正确的、合法的,以及多线程之间如何进行通信,代码中变量的读写行为如何反应到内存、CPU缓存的底层细节。
在Java中包含了几个关键字:volatile、final和synchronized,帮助程序员把代码中的并发需求描述给编译器。Java内存模型中定义了它们的行为,确保正确同步的Java代码在所有的处理器架构上都能正确执行。
synchronization 可以实现什么
Synchronization有多种语义,其中最容易理解的是互斥,对于一个monitor对象,只能够被一个线程持有,意味着一旦有线程进入了同步代码块,那么其它线程就不能进入直到第一个进入的线程退出代码块(这因为都能理解)。
但是更多的时候,使用synchronization并非单单互斥功能,Synchronization保证了线程在同步块之前或者期间写入动作,对于后续进入该代码块的线程是可见的(又是可见性,不过这里需要注意是对同一个monitor对象而言)。在一个线程退出同步块时,线程释放monitor对象,它的作用是把CPU缓存数据(本地缓存数据)刷新到主内存中,从而实现该线程的行为可以被其它线程看到。在其它线程进入到该代码块时,需要获得monitor对象,它在作用是使CPU缓存失效,从而使变量从主内存中重新加载,然后就可以看到之前线程对该变量的修改。
但从缓存的角度看,似乎这个问题只会影响多处理器的机器,对于单核来说没什么问题,但是别忘了,它还有一个语义是禁止指令的重排序,对于编译器来说,同步块中的代码不会移动到获取和释放monitor外面。
下面这种代码,千万不要写,会让人笑掉大牙:
synchronized (new Object()) {
}
这实际上是没有操作的操作,编译器完成可以删除这个同步语义,因为编译知道没有其它线程会在同一个monitor对象上同步。
所以,请注意:对于两个线程来说,在相同的monitor对象上同步是很重要的,以便正确的设置happens-before关系。
final 可以影响什么
如果一个类包含final字段,且在构造函数中初始化,那么正确的构造一个对象后,final字段被设置后对于其它线程是可见的。
这里所说的正确构造对象,意思是在对象的构造过程中,不允许对该对象进行引用,不然的话,可能存在其它线程在对象还没构造完成时就对该对象进行访问,造成不必要的麻烦。
class FinalFieldExample {
  final int x;
  int y;
  static FinalFieldExample f;
  public FinalFieldExample() {
    x = 3;
    y = 4;
  }
  static void writer() {
    f = new FinalFieldExample();
  }
  static void reader() {
    if (f != null) {
      int i = f.x;
      int j = f.y;
    }
  }
}
上面这个例子描述了应该如何使用final字段,一个线程A执行reader方法,如果f已经在线程B初始化好,那么可以确保线程A看到x值是3,因为它是final修饰的,而不能确保看到y的值是4。
如果构造函数是下面这样的:
public FinalFieldExample() { // bad!
  x = 3;
  y = 4;
  // bad construction - allowing this to escape
  global.obj = this;
}
这样通过global.obj拿到对象后,并不能保证x的值是3.
volatile可以做什么
Volatile字段主要用于线程之间进行通信,volatile字段的每次读行为都能看到其它线程最后一次对该字段的写行为,通过它就可以避免拿到缓存中陈旧数据。它们必须保证在被写入之后,会被刷新到主内存中,这样就可以立即对其它线程可以见。类似的,在读取volatile字段之前,缓存必须是无效的,以保证每次拿到的都是主内存的值,都是最新的值。volatile的内存语义和sychronize获取和释放monitor的实现目的是差不多的。
对于重新排序,volatile也有额外的限制。
下面看一个例子:
class VolatileExample {
  int x = 0;
  volatile boolean v = false;
  public void writer() {
    x = 42;
    v = true;
  }
  public void reader() {
    if (v == true) {
      //uses x - guaranteed to see 42.
    }
  }
}
同样的,假设一个线程A执行writer,另一个线程B执行reader,writer中对变量v的写入把x的写入也刷新到主内存中。reader方法中会从主内存重新获取v的值,所以如果线程B看到v的值为true,就能保证拿到的x是42.(因为把x设置成42发生在把v设置成true之前,volatile禁止这两个写入行为的重排序)。
如果变量v不是volatile,那么以上的描述就不成立了,因为执行顺序可能是v=true, x=42,或者对于线程B来说,根本看不到v被设置成了true。
double-checked locking的问题
臭名昭著的双重检查(其中一种单例模式),是一种延迟初始化的实现技巧,避免了同步的开销,因为在早期的JVM,同步操作性能很差,所以才出现了这样的小技巧。
private static Something instance = null;
public Something getInstance() {
  if (instance == null) {
    synchronized (this) {
      if (instance == null)
        instance = new Something();
    }
  }
  return instance;
}
这个技巧看起来很聪明,避免了同步的开销,但是有一个问题,它可能不起作用,为什么呢?因为实例的初始化和实例字段的写入可能被编译器重排序,这样就可能返回部门构造的对象,结果就是读到了一个未初始化完成的对象。
当然,这种bug可以通过使用volatile修饰instance字段进行fix,但是我觉得这种代码格式实在太丑陋了,如果真要延迟初始化实例,不妨使用下面这种方式:
private static class LazySomethingHolder {
  public static Something something = new Something();
}
public static Something getInstance() {
  return LazySomethingHolder.something;
}
由于是静态字段的初始化,可以确保对访问该类的所以线程都是可见的。
对于这些,我们需要关心什么
并发产生的bug非常难以调试,通常在测试代码中难以复现,当系统负载上来之后,一旦发生,又很难去捕捉,为了确保程序能够在任意环境正确的执行,最好是提前花点时间好好思考,虽然很难,但还是比调试一个线上bug来得容易的多。
作者:占小狼
链接:https://www.jianshu.com/p/bf158fbb2432
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
什么是Java内存模型的更多相关文章
- JVM学习(3)——总结Java内存模型
		
俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及到的知识点总结如下: 为什么学习Java的内存模式 缓存一致性问题 什么是内存模型 JMM(Java Memory Model)简 ...
 - 浅析java内存模型--JMM(Java Memory Model)
		
在并发编程中,多个线程之间采取什么机制进行通信(信息交换),什么机制进行数据的同步? 在Java语言中,采用的是共享内存模型来实现多线程之间的信息交换和数据同步的. 线程之间通过共享程序公共的状态,通 ...
 - JMM(java内存模型)
		
What is a memory model, anyway? In multiprocessorsystems, processors generally have one or more laye ...
 - 《深入理解Java内存模型》读书总结
		
概要 文章是<深入理解Java内容模型>读书笔记,该书总共包括了3部分的知识. 第1部分,基本概念 包括"并发.同步.主内存.本地内存.重排序.内存屏障.happens befo ...
 - Java内存模型深度解析:final--转
		
原文地址:http://www.codeceo.com/article/java-memory-6.html 与前面介绍的锁和Volatile相比较,对final域的读和写更像是普通的变量访问.对于f ...
 - Java内存模型深度解析:volatile--转
		
原文地址:http://www.codeceo.com/article/java-memory-4.html Volatile的特性 当我们声明共享变量为volatile后,对这个变量的读/写将会很特 ...
 - Java内存模型深度解析:顺序一致性--转
		
原文地址:http://www.codeceo.com/article/java-memory-3.html 数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数据 ...
 - Java内存模型深度解析:基础部分--转
		
原文地址:http://www.codeceo.com/article/java-memory-1.html 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何 ...
 - 深入理解java内存模型系列文章
		
转载关于java内存模型的系列文章,写的非常好. 深入理解java内存模型(一)--基础 深入理解java内存模型(二)--重排序 深入理解java内存模型(三)--顺序一致性 深入理解java内存模 ...
 - Java内存模型深度解读
		
Java内存模型规范了Java虚拟机与计算机内存是如何协同工作的.Java虚拟机是一个完整的计算机的一个模型,因此这个模型自然也包含一个内存模型——又称为Java内存模型. 如果你想设计表现良好的并发 ...
 
随机推荐
- Windows10 上安装 Anaconda 后命令提示符(cmd)下无法执行(python / pip)命令解决方案
			
原文:https://blog.csdn.net/qq_38644840/article/details/85064408 安装Anaconda后一段时间内能够在命令提示符(cmd)界面运行pytho ...
 - MySQL分组查询每组最新的一条数据(通俗易懂)
			
开发中经常会遇到,分组查询最新数据的问题,比如下面这张表(查询每个地址最新的一条记录): sql如下: -- ---------------------------- -- Table structu ...
 - [LeetCode] 198. 打家劫舍 ☆(动态规划)
			
描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个 ...
 - jQuery知识梳理20190818
			
目录 jQuery知识梳理20190818 1. 时间绑定和解绑 2. 区别mouseover与mouseenter 3. 时间委托(委派/代理) 4 . 多库共存 5.window.onload与$ ...
 - MySQL-CentOS7上安装Mysql5.7
			
#安装 wget http://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm .noarch.rpm yum instal ...
 - 实验之RSTP基础配置
			
STP升级版之RSTP 实验环境 实验拓扑图 实验编址 实验步骤 1.基本配置配置PC端 测试i相通性 2.配置RSTP基本功能在S1-S4上都使用命令stp mode rstp更改生成树模式(因为华 ...
 - Lovers(HDU6562+线段树+2018年吉林站)
			
题目链接 传送门 题意 初始时有\(n\)个空串,然后进行\(q\)次操作,操作分为以下两种: wrap l r x:把\(l,r\)中的每个字符串的首尾都加入\(x\),如\(s_i=121,x=3 ...
 - js插件---WebUploader 如何接收服务端返回的数据
			
js插件---WebUploader 如何接收服务端返回的数据 一.总结 一句话总结: uploadSuccess有两个参数,一个是file(上传的文件信息),一个是response(服务器返回的信息 ...
 - JQuery DOM操作(属性操作/样式操作/文档过滤)
			
jQuery——入门(三)JQuery DOM操作(属性操作/样式操作/文档过滤) 一.DOM属性操作 1.属性 (1).attr() 方法 语法:$(selector).attr(name|prop ...
 - 最详细的keepalived+lvs-dr配置文档
			
四台台机器: 分发器主:192.168.0.154 分发器备:192.168.0.171 rs_1:192.168.0.131 rs_2:192.168.0.132 keepalived安装: yum ...