PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是

  1. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。
  2. 自适应调整:自适应调整学习率 ReduceLROnPlateau。
  3. 自定义调整:自定义调整学习率 LambdaLR。

等间隔调整学习率 StepLR

等间隔调整学习率,调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。需要注意的是, step 通常是指 epoch,不要弄成 iteration 了。

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

参数设置:

step_size(int)- 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为 lr*gamma。

gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。

last_epoch(int)- 上一个 epoch 数,这个变量用来指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。

举例:

# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05 if epoch < 30
# lr = 0.005 if 30 <= epoch < 60
# lr = 0.0005 if 60 <= epoch < 90
# ...
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(100):
train(...)
validate(...)
scheduler.step()

注:

学习率调整要放在optimizer更新之后。如果\(scheduler.step()\)放在\(optimizer.update()\)的前面,将会调过学习率更新的第一个值。

按需调整学习率 MultiStepLR

按设定的间隔调整学习率。这个方法适合后期调试使用,观察 loss 曲线,为每个实验定制学习率调整时机。

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

参数设置:

milestones(list)- 一个 list,每一个元素代表何时调整学习率, list 元素必须是递增的。如 milestones=[30,80,120]

gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。

指数衰减调整学习率 ExponentialLR

按指数衰减调整学习率,调整公式:\(lr=lr∗gamma^epoch\)

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

参数设置:

gamma- 学习率调整倍数的底,指数为 epoch,即\(gamma^epoch\)

余弦退火调整学习率 CosineAnnealingLR

以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2∗Tmax为周期,在一个周期内先下降,后上升。

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

参数设置:

T_max(int)- 一次学习率周期的迭代次数,即 T_max 个 epoch 之后重新设置学习率。

eta_min(float)- 最小学习率,即在一个周期中,学习率最小会下降到 eta_min,默认值为 0。

自适应调整学习率 ReduceLROnPlateau

当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。

例如,当验证集的 loss 不再下降时,进行学习率调整;或者监测验证集的 accuracy,当accuracy 不再上升时,则调整学习率。

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

参数设置:

mode(str)- 模式选择,有 min 和 max 两种模式, min 表示当指标不再降低(如监测loss), max 表示当指标不再升高(如监测 accuracy)。

factor(float)- 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为 lr = lr * factor

patience(int)- 忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率。

verbose(bool)- 是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))

threshold_mode(str)- 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。

当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );

当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );

当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;

当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best - threshold;


threshold(float)- 配合 threshold_mode 使用。

cooldown(int)- “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。

min_lr(float or list)- 学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。

eps(float)- 学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。

自定义调整学习率 LambdaLR

为不同参数组设定不同学习率调整策略。将每一个参数组的学习率设置为初始学习率lr的某个函数倍.

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数设置:

lr_lambda(是一个函数,或者列表(list))--当是一个函数时,需要给其一个整数参数,使其计算出一个乘数因子,用于调整学习率,通常该输入参数是epoch数目或者是一组上面的函数组成的列表。

举例:

# Assuming optimizer has two groups.
lambda1 = lambda epoch: epoch // 30
lambda2 = lambda epoch: 0.95 ** epoch
scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
for epoch in range(100):
train(...)
validate(...)
scheduler.step()

引用:

  1. https://blog.csdn.net/shanglianlm/article/details/85143614
  2. https://pytorch.org/docs/master/optim.html

PyTorch学习之六个学习率调整策略的更多相关文章

  1. 【转载】 PyTorch学习之六个学习率调整策略

    原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 ----------------------------------- ...

  2. 史上最全学习率调整策略lr_scheduler

    学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力.所以学习率调整策略同样至关重要,这篇博客介绍一下Pytorch中常见的学习率调整方法. import torch ...

  3. tensorflow中的学习率调整策略

    通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点. tensorflow中提供了多种学习率的调整方式.在https://www.tens ...

  4. pytorch(17)学习率调整

    学习率调整 class _LRScheduler 主要属性 optimizer:关联的优化器 last_epoch:记录epoch数 bash_lrs:记录初始学习率 class _LRSchedul ...

  5. 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...

  6. Pytorch系列:(八)学习率调整方法

    学习率的调整会对网络模型的训练造成巨大的影响,本文总结了pytorch自带的学习率调整函数,以及其使用方法. 设置网络固定学习率 设置固定学习率的方法有两种,第一种是直接设置一些学习率,网络从头到尾都 ...

  7. 【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau

    原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 ------------------------------------ ...

  8. Pytorch学习之源码理解:pytorch/examples/mnists

    Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...

  9. PyTorch 学习

    PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它 ...

随机推荐

  1. vue router 常用操作

    1.  普通路由 const routes = [ { path: '/index', component: index } ] 2. 重定向 redirect const routes = [ { ...

  2. Matlab中添加语音处理(voicebox)工具箱

    系统环境 win10+Matlab2017b 下载voicebox工具箱 官方下载:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.zip ...

  3. UWP 使用exe程序

    0  添加程序到UWP中 1  添加引用 Windows Desktop Extensions For The UWP 2 修改清单文件(在清单文件上右键查看代码) 2.1 添加xmlns引用 //P ...

  4. 【问题记录】ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)

    一.问题描述 环境:MySQL 8.0 + Windows 由于密码错误或者其他原因导致无法连上MySQL服务,如下图: 二.解决方案 解决该问题的具体步骤如下: 1.关闭MySQL服务 以管理员权限 ...

  5. C# 打开mpp文件(Microsoft object)问题总结

    有需求就有解决方案,早上还没有听说过什么是 mpp 文件,下午已经能成功的将功能实现,这难道就是程序员的职业素养?哈哈哈哈 从网上找了很多方法,最后自己找到一个十分简单的打开 mpp 文件的方法: p ...

  6. MVC+Ninject+三层架构+代码生成 -- 总结(二、建項目)

    1.項目分層,其中SqlSugar 是一個ORM 庫類. 2.VS庫類 視圖.

  7. C#4.0的十种语法糖

    https://www.cnblogs.com/dotnet261010/p/6055092.html

  8. CLOS : Common Lisp 的面向对象支持

    1.  defclass   ( :accessor/reader/writer ;   :initarg  ;  :initform 2. defgeneric 3. defmethod ----- ...

  9. vue 强制刷新 demo 神器

    this.$forceUpdate() /*关键句,强制更新dom*/

  10. vi/vim的快捷操作(2)

    1.拷贝当前行[yy],拷贝当前行向下的5行[5yy],并粘贴[p] 2.删除当前行[dd],删除当前行向下的5行[5dd] 3.在文件中查找某个单词,命令行模式下输入[/关键字],回车查找,输入[n ...