#include<iostream>

#include<iomanip>

using namespace std;

int main()

{

double x, y, h;      //,x为对应的每一步x的值,其中y为对应的每一步y的值

x = 0;      //对x赋初值

y = 1;      //对y赋初值

h = 0.1;      //步长设置为0.1

cout << setiosflags(ios::left);

cout << setw(20) << "y的计算值";

cout << setw(20) << "y的理论值";

cout << setw(20) << "x的值";

cout << setw(20) << "误差" << endl;

cout << setw(20) << y;

cout << setw(20) << y;

cout << setw(20) << x;

cout << setw(20) << 0 << endl;

for (int i = 0; i < 10; i++)

{

y = y + h*(y - (2 * x / y));      //迭代得到y的新值

cout << setw(20) << y;      //输出y的新值

x += h;      //迭代得到最新的x值

cout << setw(20) << sqrtf(1 + 2 * x);      //计算y的理论值

cout << setw(20) << x;      //输出x的新值

cout << setw(20) << y - sqrtf(1 + 2 * x) << endl;      //计算误差

}

return 0;

}

运行结果:

欧拉法求解常微分方程(c++)的更多相关文章

  1. 后退欧拉法求解常微分方程(c++)

    #include<iostream> #include<iomanip> using namespace std; int main() { double x,y,yn,h,t ...

  2. 欧拉法求解常微分方程(c++)【转载】

    摘自<c++和面向对象数值计算>,代码简洁明快,采用类进行封装实现代码,增强代码的重用性,通过继承可实现代码的重用,采用函数指针,通用性增强,在函数改变时只需要单独改变函数部分的代码,无需 ...

  3. 龙哥库塔法or欧拉法求解微分方程matlab实现

    举例:分别用欧拉法和龙哥库塔法求解下面的微分方程 我们知道的欧拉法(Euler)"思想是用先前的差商近似代替倒数",直白一些的编程说法即:f(i+1)=f(i)+h*f(x,y)其 ...

  4. MATLAB求解常微分方程:ode45函数与dsolve函数

    ode45函数无法求出解析解,dsolve可以求出解析解(若有),但是速度较慢. 1.      ode45函数 ①求一阶常微分方程的初值问题 [t,y] = ode45(@(t,y)y-2*t/y, ...

  5. 改进欧拉公式求解常微分方程(c++)

    #include<iostream> #include<iomanip> using namespace std; int main() { double x,y,h,temp ...

  6. 梯形法求解常微分方程(c++)

    #include<iostream> #include<iomanip> using namespace std; int main() { double x,y,yn,h,t ...

  7. ODEINT 求解常微分方程(4)

    import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt # function tha ...

  8. ODEINT 求解常微分方程(3)

    import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt # function tha ...

  9. ODEINT 求解常微分方程(2)

    import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt # function tha ...

随机推荐

  1. Django---CBV和FBV的使用,CBV的流程,给视图加装饰器,Request对象方法,属性和Response对象,form表单的上传

    Django---CBV和FBV的使用,CBV的流程,给视图加装饰器,Request请求对象方法,属性和Response响应对象,form表单的上传 一丶CBV和FBV       在Django中存 ...

  2. 【转载】华为荣耀V9的手机录屏功能如何开启

    手机录屏有时候对我们的帮助很大,例如可以录制相应的APP使用教程.微信小程序使用流量讲解视频等,针对于软件开发人员等来说,手机录屏功能针对功能演示视频非常的有帮助.在华为荣耀V9手机中,进行手机录屏有 ...

  3. psexec与wmi在内网渗透的使用

    psexec是一个很好的管理工具,在内网渗透中也被广泛使用. 但太“出名”也往往会遭来各种麻烦. 在有安全监听.防护的内网中使用psexec会容易触发告警. 1.psexec用法(前提:对方要开启ad ...

  4. 【案例】如何让阀门制造提高排产效率?APS系统帮你实现

    随着公司业务发展,苏州纽威阀门公司将承接来自各个国家的更多产品业务,越来越多的客户要求对产品进行精确的交期预估和管理.而目前对产线的产能管理仅限于人工静态产能计算. 由于产品繁多,生产流程各异,不同产 ...

  5. IOS 微信、QQ、叮叮等APP虚拟定位 实在太好用了

    前不久爱思助手更新了最新版本:V7.96,同时更新了好几个功能,包括给ios设备修改虚拟定位功能,想要给手机修改,我们需要电脑下载爱思助手最新版本V7.96,数据线连接电脑修改. 借助爱思助手的虚拟定 ...

  6. Redis系列-第六篇哨兵模式

    https://blog.csdn.net/niugang0920/article/details/97141175 Redis的主从复制模式下, 一旦主节点由于故障不能提供服务, 需要人工将从节点晋 ...

  7. prometheus学习系列二: Prometheus安装

    下载 在prometheus的官网的download页面,可以找到prometheus的下载二进制包. [root@node00 src]# cd /usr/src/ [root@node00 src ...

  8. 带你快速上手前端三剑客之css

    CSS介绍 ​ CSS(Cascading Style Sheet , 层叠样式表)定义如何显示HTML元素.当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染) 组成 ​ 每个CS ...

  9. Kali -关闭防火墙

    kali关闭防火墙前需要安装ufw 安装 apt-get install ufw 关闭 ufw disable # To disable the firewall 开启 ufw enable # To ...

  10. linux下activemq安装与配置activemq-5.15.2

    linux下activemq安装与配置 前提 配置好jdk环境   一.下载:apache-activemq-5.15.2-bin.tar.gz https://archive.apache.org/ ...