Code:

#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<algorithm>
#include<vector>
using namespace std;
void setIO(string a){
freopen((a+".in").c_str(),"r",stdin);
freopen((a+".out").c_str(),"w",stdout);
} const int maxn = 5009;
int low[maxn], pre[maxn], idx[maxn], A[maxn], B[maxn], ab;
bool is[maxn][maxn];
vector<int>G[maxn], idxx[maxn];
stack<int>S;
int n,m,scc, num;
void addedge(int u,int v){ G[u].push_back(v); }
void tarjan(int u,int fa){
low[u]=pre[u]=++scc;
S.push(u);
for(int i=0;i<G[u].size();++i){
if(G[u][i]==fa) continue;
if(!pre[G[u][i]]) {
tarjan(G[u][i],u);
low[u]=min(low[u],low[G[u][i]]);
}
else if(!idx[G[u][i]]) low[u]=min(low[u],pre[G[u][i]]);
}
if(low[u]==pre[u])
{
++num;
for(;;){
int g=S.top();S.pop();
idxx[num].push_back(g);
idx[g]=num;
if(g==u) break;
}
}
}
int tag[maxn], arr[maxn][maxn], p, current;
void dfs(int u){
arr[current][++p]=u;
tag[u]=1;
int siz=G[u].size();
for(int i=0;i<siz;++i){
if(tag[G[u][i]] || is[u][G[u][i]]) continue;
dfs(G[u][i]);
}
}
int main(){
//setIO("travel");
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i){
int a,b;
scanf("%d%d",&a,&b);
addedge(a,b);
addedge(b,a);
}
for(int i=1;i<=n;++i){
int siz=G[i].size();
sort(G[i].begin(),G[i].end());
}
tarjan(1,0);
for(int i=1;i<=num;++i){
if(idxx[i].size()>1) {
int siz=idxx[i].size();
for(int j=0;j<siz;++j)
for(int k=j+1;k<siz;++k) A[++ab]=idxx[i][j],B[ab]=idxx[i][k];
break;
}
}
if(ab==0) { dfs(1); for(int i=1;i<=n;++i) printf("%d ",arr[0][i]); return 0;}
for(int i=1;i<=ab;++i){
p=0;
++current;
memset(tag,0,sizeof(tag));
is[A[i]][B[i]]=is[B[i]][A[i]]=1;
dfs(1);
is[A[i]][B[i]]=is[B[i]][A[i]]=0;
}
int cur_best=1;
for(int i=2;i<=current;++i){
for(int j=1;j<=n;++j) if(arr[cur_best][j]!=arr[i][j]){
if(arr[cur_best][j]>arr[i][j]) cur_best=i;
break;
}
}
for(int i=1;i<=n;++i) printf("%d ",arr[cur_best][i]);
printf("\n");
return 0;
}

  

noip 2018 day2 T1 旅行 基环树 tarjan的更多相关文章

  1. noip 2018 Day2 T1 旅行

    暴力删边,暴力枚举 #include <bits/stdc++.h> using namespace std; #define MAXM 5010 inline int read() { ...

  2. P5022 旅行[基环树]

    以后必须学会面向数据编程!看半天题目不知道咋写直接爆搜,结果分少的可怜,还不如直接贪搞个60分. 观察数据,发现图至多存在一个环. 显然,如果没有环,这个题不跟你多bb,直接贪就完事了,线性复杂度. ...

  3. 3730 无线网络发射选址[NOIP 0214 day2 T1]

    3730 无线网络发射选址  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 青铜 Bronze 题解  查看运行结果     题目描述 Description 随着智能手机的日 ...

  4. NOIP 2014 Day2 T1 无线网络发射器

    #include<iostream> #include<cmath> #include<cstdlib> #include<cstdio> #inclu ...

  5. noip 2016 day2 t1组合数问题

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  6. Codevs 3578 无线网络发射器选址== NOIP 2014 Day2 T1

    3578 无线网络发射器选址 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 白银 Silver 题目描述 Description 随着智能手机的日益普及,人们对无线网的需求日益增大. ...

  7. noip 2018 day1 T1 铺设道路 贪心

    Code: #include<cstdio> using namespace std; int main() { int last=0,ans=0; int n;scanf("% ...

  8. [NOIp 2018]all

    Description 题库链接: Day1 T1 铺设道路 Day1 T2 货币系统 Day1 T3 赛道修建 Day2 T1 旅行 Day2 T2 填数游戏 Day2 T3 保卫王国 Soluti ...

  9. NOIP 2018旅行题解

    从佳木斯回来刷一刷去年没A的题 题目描述 小 Y 是一个爱好旅行的 OIer.她来到 X 国,打算将各个城市都玩一遍. 小Y了解到, X国的 nn 个城市之间有 mm 条双向道路.每条双向道路连接两个 ...

随机推荐

  1. 低价购买 洛谷1108 codevs4748 dp

    首先,,我相信第一问是可以做出来的,,,做不出来自行面壁思过,,, 第二问,我们可以发现,如果f[i]为1时应该将其g[i]初始化为1,当初就是因为这个wa了一个世纪,之后先考虑不需要判重时的情况,如 ...

  2. Windows下使用python绘制caffe中.prototxt网络结构数据可视化

    准备工具: 1. 已编译好的pycaffe 2. Anaconda(python2.7) 3. graphviz 4. pydot  1. graphviz安装 graphviz是贝尔实验室开发的一个 ...

  3. Struts2中Struts.xml的作用

    struts.xml 为Struts 2的核心配置文件.struts.xml文件主要负责管理应用中的Action映射,以及该Action包含的Result定义等.struts.xml中主要配置Stru ...

  4. BZOJ 3143 高斯消元+贪心....

    思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cm ...

  5. 实时监控Cat之旅~对请求是否正常结束做监控(分布式的消息树)

    对基于请求的分布式消息树的分析 在MVC时有过滤器System.Web.Mvc.ActionFilterAttribute,它可以对action执行的整个过程进行拦截,执行前与执行后我们可以注入自己的 ...

  6. 支付宝SDK集成加密库迁移错误问题

    最近项目中集成了第三方支付,主要有微信支付和支付宝支付,当然这里我主要想说一下关于集成支付宝支付. 首先从支付宝开发者网站上下载下来了SDK以及DEMO,我们就可以根据DEMO进行分析以及集成.支付宝 ...

  7. vue中指令写了一个demo

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 不再安全的 OSSpinLock

    自旋锁的本质是持续占有cpu,直到获取到资源.与其他锁的忙等待的实现机制不同. 昨天有位开发者在 Github 上给我提了一个 issue,里面指出 OSSpinLock 在新版 iOS 中已经不能再 ...

  9. hibernate 不与数据库对应的注解

    @Transient          此注解必须写到get方法上

  10. js获取css

    原帖地址:http://kingphp.blog.163.com/blog/static/20042324420120109438458/ 我们通过dom.style获得的属性是有限制的,只能获取ht ...