[POI2008]KUP-Plot purchase(单调队列)
题意
给定k,n,和n*n的矩阵,求一个子矩形满足权值和在[k,2k]之间
,
题解
这里用到了极大化矩阵的思想。推荐论文《浅谈用极大化思想解决最大子矩阵问题》Orz
如果有一个元素在[k,2k]之间。直接输出就好。
否则。把所有大于2k的元素作为障碍点。
求每一个最大化矩阵。(用单调队列)
如果这个矩阵权值和大于等于k
那么这个矩阵一定有一个子矩阵满足条件。这个结论可以证明。
假设这个矩阵权值和小于等于2k则直接输出这个矩阵。
否则这个矩阵权值和一定大于2k
假设这个矩阵去掉第一行后权值和大于k,则去掉第一行后的矩阵继续操作。
假设权值和小于等于k则矩阵的第一行权值和一定大于k,所以一个一个去除这一行的元素判断即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const long long N=;
long long n,k,a[N][N],book[N][N],sum[N][N],sum1[N][N],top,stack[N],r[N],l[N];
void work(long long x1,long long y1,long long x2,long long y2){
if(sum1[x2][y2]-sum1[x2][y1-]-sum1[x1-][y2]+sum[x1-][y1-]<=*k){
cout<<y1<<" "<<x1<<" "<<y2<<" "<<x2;
return ;
}
while(sum1[x2-][y2]-sum1[x2-][y1-]-sum1[x1-][y2]+sum1[x1-][y1-]>=k){
x2--;
}
while(sum1[x2][y2]-sum1[x2][y1-]-sum1[x2-][y2]+sum1[x2-][y1-]>*k)y1++;
cout<<y1<<" "<<x2<<" "<<y2<<" "<<x2;
}
int main(){
scanf("%lld%lld",&k,&n);
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++){
scanf("%lld",&a[i][j]);
if(a[i][j]>=k&&a[i][j]<=*k){
cout<<j<<" "<<i<<" "<<j<<" "<<i;
return ;
}
if(a[i][j]>*k)book[i][j]=;
if(book[i][j])sum[i][j]=;
else sum[i][j]=sum[i-][j]+;
sum1[i][j]=sum1[i-][j]+sum1[i][j-]-sum1[i-][j-]+a[i][j];
}
for(long long i=;i<=n;i++){
top=;
for(long long j=;j<=n;j++){
while(sum[i][j]<sum[i][stack[top]]){
r[stack[top]]=j-;
top--;
}
stack[++top]=j;
}
while(top){
r[stack[top--]]=n;
}
top=;
for(long long j=n;j>=;j--){
while(sum[i][j]<sum[i][stack[top]]){
l[stack[top]]=j+;
top--;
}
stack[++top]=j;
}
while(top){
l[stack[top--]]=;
}
for(long long j=;j<=n;j++){
if(sum1[i][r[j]]-sum1[i][l[j]-]-sum1[i-sum[i][j]][r[j]]+sum1[i-sum[i][j]][l[j]-]>=k){
work(i-sum[i][j]+,l[j],i,r[j]);
return ;
}
}
}
printf("NIE");
return ;
}
[POI2008]KUP-Plot purchase(单调队列)的更多相关文章
- bzoj 1122 [POI2008]账本BBB 模拟贪心,单调队列
[POI2008]账本BBB Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 524 Solved: 251[Submit][Status][Disc ...
- [BZOJ1122][POI2008]账本BBB 单调队列+后缀和
Description 一个长度为n的记账单,+表示存¥1,-表示取¥1.现在发现记账单有问题.一开始本来已经存了¥p,并且知道最后账户上还有¥q.你要把记账单修改正确,使得 1:账户永远不会出现负数 ...
- BZOJ 1122 POI2008 账本BBB 单调队列
题目大意:给定一个由+1和−1构成的长度为n的序列,提供两种操作: 1.将某一位取反,花销为x 2.将最后一位移动到前一位.花销为y 要求终于p+sumn=q.且p+sumi≥0(1≤i≤n),求最小 ...
- BestCoder Round #89 B题---Fxx and game(单调队列)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5945 问题描述 输入描述 输出描述 输入样例 输出样例 题意:中文题,不再赘述: 思路: B ...
- 单调队列 && 斜率优化dp 专题
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...
- FZU 1914 单调队列
题目链接:http://acm.fzu.edu.cn/problem.php?pid=1914 题意: 给出一个数列,如果它的前i(1<=i<=n)项和都是正的,那么这个数列是正的,问这个 ...
- BZOJ 1047 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 题意:见中文题面 思路:该题是求二维的子矩阵的最大值与最小值的差值尽量小.所以可以考 ...
- 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列
第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
随机推荐
- ApacheFlink简介
对无界数据集的连续处理 在我们详细介绍Flink之前,让我们从更高的层面上回顾处理数据时可能遇到的数据集的类型以及您可以选择处理的执行模型的类型.这两个想法经常被混淆,清楚地区分它们是有用的. 首先, ...
- SparkShuffle调优原理和最佳实践
在网络层,互联网提供所有应用程序都要使用的两种类型的服务,尽管目前理解这些服务的细节并不重要,但在所有TCP/IP概述中,都不能忽略他们: 无连接分组交付服务(Connectionless Packe ...
- Devexpress控件使用一:GridControl
1.控件及列表展示 1).控件 2).构建表格,用于列表展示 3).gridControl绑定数据 4).调用绑定:BindDataSource(InitDt()); 5).展示列表 2.表格的列配置 ...
- swift语言点评一
一.变量定义 1.常量与变量 Use let to make a constant and var to make a variable. 2.类型与推测 However, you don’t alw ...
- [SCOI2009]windy数 数位dp
Code: #include<cmath> #include<iostream> #include<cstdio> using namespace std; con ...
- 路飞学城Python-Day3
Moudle 1 Chapter 1 #练习题# 1.简述编译型与解释型语言的区别,且分别列出你知道的哪些语言属于编译型,哪些属于解释型?"""编译型:编译类指在应用源程 ...
- Maven缺少jar添加方式
Maven 中央仓库地址: 1. http://www.sonatype.org/nexus/ 2. http://mvnrepository.com/ (本人推荐仓库) 3. http://repo ...
- apache源码编译安装
源码安装apche 下载apache的源码包文件 访问http://mirror.bit.edu.cn/apache/httpd/,复制如下gz文件的链接地址,并使用wget下载到本地 wget -P ...
- [LeetCode] 455. 分发饼干 assign-cookies(贪心算法)
思路: 尽量先将小饼干分配给胃口小的孩子,故而饼干和孩子胃口都应该先排序. python中,a.sort()只能用于a为list, sort()是可变对象的方法,无参数,无返回值,但会影响改变对象. ...
- Fedora 17 安裝完全指南
Fedora 17 关闭U盘自动mount gsettings set org.gnome.desktop.media-handling automount "false" gse ...