Codeforces Round #332 (Div. 2)D. Spongebob and Squares 数学
Spongebob is already tired trying to reason his weird actions and calculations, so he simply asked you to find all pairs of n and m, such that there are exactly x distinct squares in the table consisting of n rows and m columns. For example, in a 3 × 5 table there are 15squares with side one, 8 squares with side two and 3 squares with side three. The total number of distinct squares in a 3 × 5 table is15 + 8 + 3 = 26.
The first line of the input contains a single integer x (1 ≤ x ≤ 1018) — the number of squares inside the tables Spongebob is interested in.
First print a single integer k — the number of tables with exactly x distinct squares inside.
Then print k pairs of integers describing the tables. Print the pairs in the order of increasing n, and in case of equality — in the order of increasing m.
26
6
1 26
2 9
3 5
5 3
9 2
26 1
2
2
1 2
2 1
8
4
1 8
2 3
3 2
8 1
In a 1 × 2 table there are 2 1 × 1 squares. So, 2 distinct squares in total.

In a 2 × 3 table there are 6 1 × 1 squares and 2 2 × 2 squares. That is equal to 8 squares in total.

题意:给你x,问你多少种n*m的情况使得,在当前这个矩形内小正方形的个数为x
题解:
列式推: sigma(k=1,k=min(n,m))(n-k+1)*(m-k+1)=x;
我们枚举n,得到m
///
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;ch=getchar();
}
while(ch>=''&&ch<=''){
x=x*+ch-'';ch=getchar();
}return x*f;
}
//****************************************
const int N=+;
#define maxn 100000+5 ll x; int main()
{
x=read();
vector<pair<ll, ll> > ans;
ll sum=;
for(ll i=; sum<=x; i++)
{
sum+=1ll*i*i;
long long d=x-sum;
long long k=1LL*i*(i+)/;
if(d%k==)
{
ans.push_back({i, d/k+i});
ans.push_back({d/k+i, i});
}
}
sort(ans.begin(), ans.end());
ans.resize(unique(ans.begin(), ans.end())-ans.begin());
printf("%d\n", ans.size());
for(ll i=;i<ans.size();i++)
printf("%I64d %I64d\n", ans[i].first, ans[i].second);
return ;
}
代码
Codeforces Round #332 (Div. 2)D. Spongebob and Squares 数学的更多相关文章
- Codeforces Round #332 (Div. 2) D. Spongebob and Squares 数学题枚举
D. Spongebob and Squares Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...
- Codeforces Round #332 (Div. 2) D. Spongebob and Squares(枚举)
http://codeforces.com/problemset/problem/599/D 题意:给出一个数x,问你有多少个n*m的网格中有x个正方形,输出n和m的值. 思路: 易得公式为:$\su ...
- Codeforces Round #332 (Div. 2) B. Spongebob and Joke 水题
B. Spongebob and Joke Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/599 ...
- Codeforces Round #332 (Div. 二) B. Spongebob and Joke
Description While Patrick was gone shopping, Spongebob decided to play a little trick on his friend. ...
- Codeforces Round #332 (Div. 2)_B. Spongebob and Joke
B. Spongebob and Joke time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #332 (Div. 2)B. Spongebob and Joke
B. Spongebob and Joke time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #332 (Div. 2) B. Spongebob and Joke 模拟
B. Spongebob and Joke While Patrick was gone shopping, Spongebob decided to play a little trick ...
- codeforces #332 div 2 D. Spongebob and Squares
http://codeforces.com/contest/599/problem/D 题意:给出总的方格数x,问有多少种不同尺寸的矩形满足题意,输出方案数和长宽(3,5和5,3算两种) 思路:比赛的 ...
- Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)
Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...
随机推荐
- java学习笔记_序列化
如果父类没有实现Serializable接口,子类实现了Serializable接口,那么子类是可以序列化的. 但是如果想要反序列化,那么就需要父类支持默认构造函数. 因为在反序列化的过程中不会调用子 ...
- Laravel5.1学习笔记20 EloquentORM 关系
Eloquent: Relationships Introduction Defining Relationships One To One One To Many Many To Many Has ...
- 【转】Java 集合系列08之 List总结(LinkedList, ArrayList等使用场景和性能分析)
概要 前面,我们学完了List的全部内容(ArrayList, LinkedList, Vector, Stack). Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例 Ja ...
- Python Base of Scientific Stack(Python基础之科学栈)
Python Base of Scientific Stack(Python基础之科学栈) 1. Python的科学栈(Scientific Stack) NumPy NumPy提供度多维数组对象,以 ...
- 努比亚(nubia) Z18 mini NX611J 解锁BootLoader 并刷入recovery ROOT
努比亚(nubia) Z18 mini NX611J解锁BootLoader 并刷入recovery ROOT 工具下载链接:https://pan.baidu.com/s/1toU-mTR9FNE ...
- java攻城师之路--复习java web之servlet
需要掌握的知识点:1.Servlet程序编写 ----- 生命周期2.ServletAPI Request Response 3.Cookie 和 Session Servlet 用来 动态web资源 ...
- @ResponseBody 返回中文乱码
第一种解决方法:在@RequestMapping注解添加produces属性 @RequestMapping(value = "testPersonalValidtor.do",p ...
- Python 之糗事百科多线程爬虫案例
import requests from lxml import etree import json import threading import queue # 采集html类 class Get ...
- CDR软件-CorelDRAW软件下载,618活动
618我有诚意,你呢? 不花钱的618,是残缺的618 给自己一个放肆shopping的机遇 活动力度不够大? 继续升级,终极体验 618疯狂倒计时! 同志们,如果你错过了之前的抢先购和升级活动 那么 ...
- (Entity framework 应用篇)把权限判断封装在数据库访问层
这里,我只是以一个例子,说一下简单权限控制,通过这个例子,大家可以设计庞大的权限管理层,把权限控制封装到数据库访问层,这样程序员就不用再写权限判断的代码了 首先,先看看我数据库DBContext的定义 ...