Description

I have a set of super poker cards, consisting of an infinite number of cards. For each positive composite integer p, there
are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and Diamond(D). There are no cards of other values.
By “composite integer”, we mean integers that have more than 2 divisors. For example, 6 is a composite integer, since it
has 4 divisors: 1, 2, 3, 6; 7 is not a composite number, since 7 only has 2 divisors: 1 and 7. Note that 1 is not composite
(it has only 1 divisor).
 
Given a positive integer n, how many ways can you pick up exactly one card from each suit (i.e. exactly one spade card,
one heart card, one club card and one diamond card), so that the card values sum to n? For example, if n=24, one way is
4S+6H+4C+10D, shown below:

Unfortunately, some of the cards are lost, but this makes the problem more interesting. To further make the problem even
more interesting (and challenging!), I’ll give you two other positive integers a and b, and you need to find out all the
answers for n=a, n=a+1, …, n=b.

Input

The input contains at most 25 test cases. Each test case begins with 3 integers a, b and c, where c is the number of lost
cards. The next line contains c strings, representing the lost cards. Each card is formatted as valueS, valueH, valueC or
valueD, where value is a composite integer. No two lost cards are the same. The input is terminated by a=b=c=0. There
will be at most one test case where a=1, b=50,000 and c<=10,000. For other test cases, 1<=a<=b<=100, 0<=c<=10.

Output

For each test case, print b-a+1 integers, one in each line. Since the numbers might be large, you should output each
integer modulo 1,000,000. Print a blank line after each test case.

题解:生成函数+FFT优化多项式乘法.

对于每种牌,构造一个生成函数,4 个生成函数相乘,输出对应项数即可.

#include<bits/stdc++.h>
#define maxn 1000000
#define ll long long
#define double long double
#define setIO(s) freopen(s".in","r",stdin), freopen(s".out","w",stdout)
using namespace std; struct cpx
{
double x,y;
cpx(double a=0,double b=0){x=a,y=b;}
};
cpx operator+(cpx a,cpx b) { return cpx(a.x+b.x,a.y+b.y); }
cpx operator-(cpx a,cpx b) { return cpx(a.x-b.x,a.y-b.y); }
cpx operator*(cpx a,cpx b) { return cpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); } namespace FFT
{
const double pi=acos(-1);
void FFT(cpx *a,int n,int flag)
{
for(int i = 0,k = 0;i < n; ++i)
{
if(i > k) swap(a[i],a[k]);
for(int j = n >> 1;(k^=j)<j;j>>=1);
}
for(int mid=1;mid<n;mid<<=1)
{
cpx wn(cos(pi/mid),flag*sin(pi/mid)),x,y;
for(int j=0;j<n;j+=(mid<<1))
{
cpx w(1,0);
for(int k=0;k<mid;++k)
{
x = a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;
a[j+mid+k]=x-y;
w=w*wn;
}
}
}
}
}; cpx arr[maxn], brr[maxn], crr[maxn], drr[maxn];
int vis[maxn],prime[maxn],non_prime[maxn];
int tot,cas;
char str[100];
int idx(char c)
{
if(c=='S') return 0;
if(c=='H') return 1;
if(c=='C') return 2;
if(c=='D') return 3;
}
void update()
{
scanf("%s",str+1);
int len=strlen(str+1);
int num=0;
for(int i=1;i<=len;++i)
{
if(str[i]>='0' && str[i]<='9')
num=num*10+str[i]-'0';
else
{
int cur=idx(str[i]);
switch(cur)
{
case 0 : { arr[num].x=0; break;}
case 1 : { brr[num].x=0; break;}
case 2 : { crr[num].x=0; break;}
case 3 : { drr[num].x=0; break;}
}
}
}
}
void get_number()
{
for(int i=2;i<=100000;++i)
{
if(!vis[i]) prime[++tot]=i;
for(int j=1;j<=tot&&prime[j]*i*1ll<=1ll*100000;++j)
{
vis[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
tot=0;
for(int i=2;i<=100000;++i) if(vis[i]) non_prime[++tot]=i;
}
int main()
{
// setIO("input");
get_number();
for(cas=1; ;++cas)
{
int l,r,o,len=1;
scanf("%d%d%d",&l,&r,&o); if(l==0&&r==0&&o==0) break; while(len<=r) len<<=1; len<<=2;
for(int i=1;i<=r;++i) arr[i]=cpx(vis[i],0);
for(int i=1;i<=r;++i) brr[i]=cpx(vis[i],0);
for(int i=1;i<=r;++i) crr[i]=cpx(vis[i],0);
for(int i=1;i<=r;++i) drr[i]=cpx(vis[i],0);
while(o--) update();
// for(int i=0;i<len;++i) printf("%d %d\n",(int)arr[i].x,(int)arr[i].y);
FFT::FFT(arr,len, 1), FFT::FFT(brr,len, 1), FFT::FFT(crr,len, 1), FFT::FFT(drr,len, 1);
for(int i=0;i<len;++i)
{
arr[i]=arr[i]*brr[i]*crr[i]*drr[i];
}
FFT::FFT(arr,len,-1);
for(int i=l;i<=r;++i) printf("%lld\n", (ll)(arr[i].x/len+0.1)%1000000);
printf("\n");
for(int i=0;i<=len+233;++i) arr[i]=brr[i]=crr[i]=drr[i]=cpx(0,0);
}
return 0;
}

  

Super Poker II UVA - 12298 FFT_生成函数的更多相关文章

  1. UVA - 12298 Super Poker II NTT

    UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数&q ...

  2. UVa12298 Super Poker II(母函数 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/23590 Description I have a set of super poker cards, ...

  3. bzoj2487: Super Poker II

    Description I have a set of super poker cards, consisting of an infinite number of cards. For each p ...

  4. UVA - 12298 Super Poker II (FFT+母函数)

    题意:有四种花色的牌,每种花色的牌中只能使用数值的约数个数大于2的牌.现在遗失了c张牌.每种花色选一张,求值在区间[a,b]的每个数值的选择方法有多少. 分析:约数个数大于2,即合数.所以先预处理出5 ...

  5. UVA 12298 Super Poker II (FFT)

    #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using ...

  6. FFT(快速傅里叶变换):UVAoj 12298 - Super Poker II

    题目:就是现在有一堆扑克里面的牌有无数张, 每种合数的牌有4中不同花色各一张(0, 1都不是合数), 没有质数或者大小是0或者1的牌现在这堆牌中缺失了其中的 c 张牌, 告诉你a, b, c接下来c张 ...

  7. UVA12298 Super Poker II

    怎么又是没人写题解的UVA好题,个人感觉应该是生成函数的大板子题了. 直接做肯定爆炸,考虑来一发优化,我们记一个多项式,其中\(i\)次项的系数就表示对于\(i\)这个数有多少种表示方式. 那么很明显 ...

  8. GCD - Extreme (II) UVA - 11426(欧拉函数!!)

    G(i) = (gcd(1, i) + gcd(2, i) + gcd(3, i) + .....+ gcd(i-1, i)) ret = G(1) + G(2) + G(3) +.....+ G(n ...

  9. GCD - Extreme (II) UVA - 11426 数学

    Given the value of N , you will have to nd the value of G . The de nition of G is given below: G = i ...

随机推荐

  1. TOYS POJ 2318 计算几何 叉乘的应用

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15060   Accepted: 7270 Description Calc ...

  2. N天学习一个linux命令之ip

    用途 show / manipulate routing, devices, policy routing and tunnels 用法 通用格式 ip [ OPTIONS ] OBJECT { CO ...

  3. no_merge hint

    This is tested in 10gR2. SQL> select * from v$version; BANNER ----------------------------------- ...

  4. Myeclipse10完美破解过程

    Myeclipse10完美破解过程 1.假设还没有破解文件的话,能够先到这里去下载破解件 http://download.csdn.net/download/wangcunhuazi/7874155 ...

  5. PHP array_fill()

    定义和用法 array_fill() 函数用给定的值填充数组,返回的数组有 number 个元素,值为 value.返回的数组使用数字索引,从 start 位置开始并递增.如果 number 为 0 ...

  6. java 9 Spring Cloud @EnableEurekaServer javax.xml.bind.JAXBContext not present

    java 9 Spring Cloud @EnableEurekaServer   javax.xml.bind.JAXBContext not present jdk 8下面还可以正常启动,jdk9 ...

  7. 【POJ 1456】 Supermarket

    [题目链接] http://poj.org/problem?id=1456 [算法] 贪心 + 堆 [代码] #include <algorithm> #include <bitse ...

  8. HTTP权威协议笔记-9.Web机器人

    经过整个春节的放肆,终于回归了,说实话,春节真心比上班累. 9.1 爬虫及爬行方式 (1) 爬虫:Web爬虫是一种机器人,他们会递归性的对各种信息Web站点进行遍历. (2) 爬行方式:Web机器人会 ...

  9. 有关于dict(字典)的特性与操作方法

    有关于dict(字典)的特性与操作方法 1.字典的特性 语法: dic = {key1 : value1,key2 : value2,key3 : value3............} 注:字典中k ...

  10. Cordova 开发环境搭建及创建第一个app

    整理记录使用cordova创建app应用程序并将其部署至Android系统移动设备上操作过程,具体如下: 一.前期安装环境 1. 安装JDK(java开发工具包) 2. 安装gradle 3. 安装A ...