洛谷——P1034 矩形覆盖
https://www.luogu.org/problem/show?pid=1034
题目描述
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入输出格式
输入格式:
n k xl y1 x2 y2 ... ...
xn yn (0<=xi,yi<=500)
输出格式:
输出至屏幕。格式为:
一个整数,即满足条件的最小的矩形面积之和。
输入输出样例
4 2
1 1
2 2
3 6
0 7
4
回溯+剪枝
搜索每个点,每次更新出矩阵的大小,当有矩阵彼此覆盖时,当前方案不可行、
#include <algorithm>
#include <cstdio> inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int n,k,x[],y[];
int ans=0x3f3f3f3f;
struct Matrix {
int x1,y1,x2,y2;
bool use;
Matrix() { use=; }
}matrix[]; #define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
inline bool _if(int x,int y,Matrix a)
{
return x>=a.x1&&x<=a.x2&&y>=a.y1&&y<=a.y2;
}
inline bool if_(Matrix a,Matrix b)
{
if(_if(a.x1,a.y1,b)) return true;
if(_if(a.x2,a.y1,b)) return true;
if(_if(a.x1,a.y2,b)) return true;
if(_if(a.x2,a.y2,b)) return true;
return false;
}
void DFS(int now)
{
Matrix tmp; int sum=;
for(int i=; i<=k; ++i)
{
if(!matrix[i].use) continue;
sum+=(matrix[i].x2-matrix[i].x1)*
(matrix[i].y2-matrix[i].y1);
for(int j=i+; j<=k; ++j)
if(matrix[j].use&&if_(matrix[i],matrix[j])) return ;
}
if(sum>ans) return ;
if(now>n) { ans=sum; return ; }
for(int i=; i<=k; ++i)
{
tmp=matrix[i];
if(!matrix[i].use)
{
matrix[i].use=;
matrix[i].x1=matrix[i].x2=x[now];
matrix[i].y1=matrix[i].y2=y[now];
}
else
{
matrix[i].x1=min(matrix[i].x1,x[now]);
matrix[i].x2=max(matrix[i].x2,x[now]);
matrix[i].y1=min(matrix[i].y1,y[now]);
matrix[i].y2=max(matrix[i].y2,y[now]);
}
DFS(now+); matrix[i]=tmp;
} return ;
} int Presist()
{
read(n);read(k);
for(int i=; i<=n; ++i)
read(x[i]),read(y[i]);
DFS(); printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(){;}
洛谷——P1034 矩形覆盖的更多相关文章
- 洛谷P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...
- 洛谷 P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1(1,11,1),p_2p2( ...
- 洛谷 - P1034 - 矩形覆盖 - dfs
https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...
- [NOIP2002] 提高组 洛谷P1034 矩形覆盖
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 洛谷 P2218 [HAOI2007]覆盖问题 解题报告
P2218 [HAOI2007]覆盖问题 题目描述 某人在山上种了\(N\)棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他 ...
- P1034 矩形覆盖
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 洛谷 P1191 矩形 题解
P1191 矩形 题目描述 给出一个 \(n \times n\)的矩阵,矩阵中,有些格子被染成白色,有些格子被染成黑色,现要求矩阵中白色矩形的数量 输入格式 第一行,一个整数\(n\),表示矩形的大 ...
- 洛谷——P2082 区间覆盖(加强版)
P2082 区间覆盖(加强版) 题目描述 已知有N个区间,每个区间的范围是[si,ti],请求出区间覆盖后的总长. 输入输出格式 输入格式: N s1 t1 s2 t2 …… sn tn 输出格式: ...
- 洛谷 P1324 矩形分割
P1324 矩形分割 题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切 ...
随机推荐
- E20170804-mk
epic n. 史诗; 叙事诗; 史诗般的作品; estimate vt. 估计,估算; 评价,评论; 估量,估价; Sprint vi. 冲刺,全速短跑; n. 全速短跑; 速度或活动的突然爆发; ...
- javascript 获取时间
Js获取当前日期时间及其它操作 var myDate = new Date();myDate.getYear(); //获取当前年份(2位)myDate.getFullYear(); ...
- CSS-类和ID选择器的区别
学习了类选择器和ID选择器,我们会发现他们之间有很多的相似处,是不是两者可以通用呢?我们不要着急先来总结一下他们的相同点和不同点: 相同点:可以应用于任何元素不同点: 1.ID选择器只能在文档中使用一 ...
- python爬虫值requests模块
- 基于如下5点展开requests模块的学习 什么是requests模块 requests模块是python中原生的基于网络请求的模块,其主要作用是用来模拟浏览器发起请求.功能强大,用法简洁高效.在 ...
- 图解TCP/IP笔记(3)——IP协议
目录 IP协议 IP寻址 IP地址组成 IP地址分类 广播地址 子网掩码 全局地址和私有地址 IP协议 跨越不同数据链路,实现两端节点之间的数据包传输 数据链路:只负责某一个区间之间的通信传输 IP协 ...
- JS——选择水果
注意点: 1.select标签size属性显示选项数组,multiple属性可以多选 2.原select节点下的子节点在移动到其他selec标签下的时候,其原来的select标签下子节点长度在发生变化 ...
- hdu,1028,整数拆分的理解
#include"iostream"using namespace std;int main() { int n,i,j,k; int c[122],temp[122]; //c[ ...
- jboss-eap-6.2修改端口号
最近要改版一个项目,用来配合日常工作使用,需要在服务器上放多个jboss,那么就需要修改jboss的端口,如果服务器上配置了JBOSS_HOME,需要先删除,否则配置修改不会生效,会依然用老的jbos ...
- NGINX+PHP-FPM7 FastCGI sent in stderr: “Primary script unknown”
https://www.cnblogs.com/hjqjk/p/5651275.html 一开始是Nginx打开网页显示一直是拒绝访问.查看nginx日志是报错显示我的题目,然后就各种搜索解决啊! 百 ...
- Sping装配之——自动装配
Sping从两个角度来实现自动化装配: 组件扫描(component scaning):spring会自动发现应用上下文中所创建的bean; 自动装配(autowiring):spring自动满足be ...