卷积与反卷积、步长(stride)与重叠(overlap)
1. 卷积与反卷积
如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2):
- 卷积的过程为:Conv(I,W)=O
- 反卷积的过称为:Deconv(W,O)=I(需要对此时的 O 的边缘进行延拓 padding)
2. 步长与重叠
卷积核移动的步长(stride)小于卷积核的边长(一般为正方行)时,变会出现卷积核与原始输入矩阵作用范围在区域上的重叠(overlap),卷积核移动的步长(stride)与卷积核的边长相一致时,不会出现重叠现象。
4×4 的输入矩阵 I和 3×3 的卷积核K:
- 在步长(stride)为 1 时,输出的大小为 (4−3+1)×(4−3+1)
现考虑其逆问题,原始输入矩阵为多大时,其与 3×3 的卷积核K 相卷积得到的输出矩阵的大小为 4×4:
- 步长(stride)为 1 时,(x−3+1)×(x−3+1)=4×4
- x=6
卷积与反卷积、步长(stride)与重叠(overlap)的更多相关文章
- 卷积与反卷积以及步长stride
1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2): 卷积的过程为:Conv(I,W)=O 反卷积的过称为:Deconv ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- 反卷积Deconvolution
反卷积(转置卷积.空洞卷积(微步卷积))近几年用得较多,本篇博客主要是介绍一下反卷积,尤其是怎么计算反卷积(选择反卷积的相关参数) 图1 空洞卷积(微步卷积)的例子,其中下面的图是输入,上面的图是输出 ...
- 用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard
『cs231n』卷积神经网络的可视化与进一步理解 深度学习小白——卷积神经网络可视化(二) TensorBoard--TensorFlow可视化 原文地址:http://blog.csdn.net/h ...
- 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积
介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...
- 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
随机推荐
- Instant Client 配置
Instant Client Download 选择 Instant Client for Microsoft Windows (32-bit) 由于PL/SQL Developer 不支持64b ...
- 国密算法SM2证书制作
国密算法sm2非对称算法椭圆曲线 原文:http://www.jonllen.cn/jonllen/work/162.aspx 前段时间将系统的RSA算法全部升级为SM2国密算法,密码机和UKey硬件 ...
- C# 数据通信
json asmxwcfwebRequestwebClient 串口 socket
- 洛谷——P1774 最接近神的人_NOI导刊2010提高(02)
https://www.luogu.org/problem/show?pid=1774 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古 ...
- 【UVA】434-Matty's Blocks
一道非常easy想复杂的题,给出主视图和右视图,计算最少能用几个正方体组成相应的视图,以及最多还能加几块正方体. 求最多加入事实上就是求出最多的正方体数减去最少的,主要就是最少的不好求. 一開始各种模 ...
- Python 在线笔试
1. 循环输入输出交互 Python在线笔试琐碎 求两个整数 A+B 的和. while True: try: (n, m) = (int(x) for x in raw_input().split( ...
- Android LoaderManager与CursorLoader用法
一.基本概念 1.LoaderManager LoaderManager用来负责管理与Activity或者Fragment联系起来的一个或多个Loaders对象. 每个Activity或者Fragme ...
- Virtualizing physical memory in a virtual machine system
A processor including a virtualization system of the processor with a memory virtualization support ...
- ASI使用
一.ASI类库集成: .添加源代码文件 ASIAuthenticationDialog.h ASIAuthenticationDialog.m ASICacheDelegate.h ASIDataCo ...
- Oracle 11gR2 静默安装奇怪错误
在静默安装Oracle 11gR2 的时候发现的奇怪错误,有点摸不着头脑 【步骤一】配置静默文件只安装软件 #--------------------------------------------- ...