Opencv目标跟踪—CamShift算法
CamShift算法全称是“Continuously Adaptive Mean-Shift”(连续的自适应MeanShift算法),是对MeanShift算法的改进算法,可以在跟踪的过程中随着目标大小的变化实时调整搜索窗口大小,对于视频序列中的每一帧还是采用MeanShift来寻找最优迭代结果,至于如何实现自动调整窗口大小的,可以查到的论述较少,我的理解是通过对MeanShift算法中零阶矩的判断实现的。
在MeanShift算法中寻找搜索窗口的质心用到窗口的零阶矩M00和一阶矩M10,M01:
零阶矩是搜索窗口内所有像素的积分,即所有像素值之和,物理上的意义是计算搜索窗口的尺寸。经过目标的H分量直方图反向投影后,目标区域的搜索窗口大部分像素值归一化后应该是最大值255,如果计算出来零阶矩大于某一阈值,可以认为此时目标铺满了整个搜索窗口,有理由认为在搜索窗口之外的区域还存在目标区域,需要增大搜索窗口的尺寸;相应的,如果零阶矩小于某一阈值,则需要缩小搜索窗口的尺寸,如此一来,当目标的大小发生变化的时候,CamShift算法就可以自适应的调整目标区域进行跟踪。
以上过程中涉及到一个关键的概念——反向投影,CamShift和MeanShift的运算都是在反向投影图像上进行的,反向投影的实现过程如下:计算并生成目标区域的H分量的直方图,反向投影其实就是把目标图像上每一个像素点的像素值替换为当前像素值所在bin对应的直方图bin的数值。
Opencv中CamShfit在使用上跟MeanShift一致:
CamShift( InputArray probImage, CV_OUT CV_IN_OUT Rect& window,
TermCriteria criteria );
第一个参数probImage是反向投影图像
第二个参数window是输入和输出的搜索窗口/目标窗口,window的尺寸会自动调整
第三个参数criteria是迭代收敛终止条件
#include "core/core.hpp"
#include "highgui/highgui.hpp"
#include "imgproc/imgproc.hpp"
#include "video/tracking.hpp"
#include<iostream>
using namespace cv;
using namespace std;
Mat image;
Mat rectImage;
Mat imageCopy; //绘制矩形框时用来拷贝原图的图像
bool leftButtonDownFlag=false; //左键单击后视频暂停播放的标志位
Point originalPoint; //矩形框起点
Point processPoint; //矩形框终点
Mat targetImageHSV;
int histSize=200;
float histR[]={0,255};
const float *histRange=histR;
int channels[]={0,1};
Mat dstHist;
Rect rect;
vector<Point> pt; //保存目标轨迹
void onMouse(int event,int x,int y,int flags ,void* ustc); //鼠标回调函数
int main(int argc,char*argv[])
{
VideoCapture video(argv[1]);
double fps=video.get(CV_CAP_PROP_FPS); //获取视频帧率
double pauseTime=1000/fps; //两幅画面中间间隔
namedWindow("跟踪木头人",0);
setMouseCallback("跟踪木头人",onMouse);
while(true)
{
if(!leftButtonDownFlag) //判定鼠标左键没有按下,采取播放视频,否则暂停
{
video>>image;
}
if(!image.data||waitKey(pauseTime)==27) //图像为空或Esc键按下退出播放
{
break;
}
if(originalPoint!=processPoint&&!leftButtonDownFlag)
{
Mat imageHSV;
Mat calcBackImage;
cvtColor(image,imageHSV,CV_RGB2HSV);
calcBackProject(&imageHSV,2,channels,dstHist,calcBackImage,&histRange); //反向投影
TermCriteria criteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.001);
CamShift(calcBackImage, rect, criteria);
Mat imageROI=imageHSV(rect); //更新模板
targetImageHSV=imageHSV(rect);
calcHist(&imageROI, 2, channels, Mat(), dstHist, 1, &histSize, &histRange);
normalize(dstHist, dstHist, 0.0, 1.0, NORM_MINMAX); //归一化
rectangle(image, rect, Scalar(255, 0, 0),3); //目标绘制
pt.push_back(Point(rect.x+rect.width/2,rect.y+rect.height/2));
for(int i=0;i<pt.size()-1;i++)
{
line(image,pt[i],pt[i+1],Scalar(0,255,0),2.5);
}
}
imshow("跟踪木头人",image);
waitKey(100);
}
return 0;
}
//*******************************************************************//
//鼠标回调函数
void onMouse(int event,int x,int y,int flags,void *ustc)
{
if(event==CV_EVENT_LBUTTONDOWN)
{
leftButtonDownFlag=true; //标志位
originalPoint=Point(x,y); //设置左键按下点的矩形起点
processPoint=originalPoint;
}
if(event==CV_EVENT_MOUSEMOVE&&leftButtonDownFlag)
{
imageCopy=image.clone();
processPoint=Point(x,y);
if(originalPoint!=processPoint)
{
//在复制的图像上绘制矩形
rectangle(imageCopy,originalPoint,processPoint,Scalar(255,0,0),2);
}
imshow("跟踪木头人",imageCopy);
}
if(event==CV_EVENT_LBUTTONUP)
{
leftButtonDownFlag=false;
rect=Rect(originalPoint,processPoint);
rectImage=image(rect); //子图像显示
imshow("Sub Image",rectImage);
cvtColor(rectImage,targetImageHSV,CV_RGB2HSV);
imshow("targetImageHSV",targetImageHSV);
calcHist(&targetImageHSV,2,channels,Mat(),dstHist,1,&histSize,&histRange,true,false);
normalize(dstHist,dstHist,0,255,CV_MINMAX);
imshow("dstHist",dstHist);
}
}
蓝色窗口是跟踪的目标,绿色线条是目标走过的轨迹。
Opencv目标跟踪—CamShift算法的更多相关文章
- 目标跟踪--CamShift
转载请注明出处! !! http://blog.csdn.net/zhonghuan1992 目标跟踪--CamShift CamShift全称是ContinuouslyAdaptive Mean S ...
- Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...
- 目标跟踪之粒子滤波---Opencv实现粒子滤波算法
目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...
- 用Camshift算法对指定目标进行跟踪
原理 Camshift算法是Continuously Adaptive Mean Shift algorithm的简称. 它是一个基于MeanSift的改进算法.它首次由Gary R.Bradski等 ...
- Python Opencv-contrib Camshift&kalman卡尔曼滤波&CSRT算法 目标跟踪实现
本次课题实现目标跟踪一共用到了三个算法,分别是Camshift.Kalman.CSRT,基于Python语言的Tkinter模块实现GUI与接口设计,项目一共包含三个文件: main.py: # co ...
- 目标跟踪之camshift---opencv中meanshift和camshift例子的应用
在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行op ...
- TLD目标跟踪算法
1. 简介 TLD目标跟踪算法是Tracking-Learning-Detection算法的简称.这个视频跟踪算法框架由英国萨里大学的一个捷克籍博士生Zdenek Kalal提出.TLD将传统的视频跟 ...
- Video Target Tracking Based on Online Learning—TLD单目标跟踪算法详解
视频目标跟踪问题分析 视频跟踪技术的主要目的是从复杂多变的的背景环境中准确提取相关的目标特征,准确地识别出跟踪目标,并且对目标的位置和姿态等信息精确地定位,为后续目标物体行为分析提供足 ...
- 基于MeanShift的目标跟踪算法及实现
这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...
随机推荐
- TPS54232-------电源管理芯片
TPS54232 DC DC开关稳压器 电源管理芯片 放大器俗称功放 注意看芯片的次序1~8是如何排布的,这个规律一般是固定的 也许我们整理多了就能发现引脚的宽度和长度都是规格好的. 下面是封装: 所 ...
- 2.Docker初体验【Docker每天5分钟】
原文:2.Docker初体验[Docker每天5分钟] Docker给PaaS世界带来的“降维打击”,其实是提供了一种非常便利的打包机制.该机制打包了应用运行所需要的整个操作系统,从而保证了本地环境和 ...
- 第二次作业:对Github的初步学习应用(四则运算的自动生成C#实现)
GIT地址 https://github.com/Anzerl?tab=repositories GIT用户名 Anzerl 学号后五位 062426 博客地址 https://www.cnb ...
- spark源码解析之scala基本语法
1. scala初识 spark由scala编写,要解析scala,首先要对scala有基本的了解. 1.1 class vs object A class is a blueprint for ob ...
- nginx启用https访问
什么是https? https 全称:Hyper Text Transfer Protocol over Secure Socket Layer,是http的安全版.即http下加入SSL协议层,因此 ...
- POJ 3259 Wormholes 邻接表的SPFA判断负权回路
http://poj.org/problem?id=3259 题目大意: 一个农民有农场,上面有一些虫洞和路,走虫洞可以回到 T秒前,而路就和平常的一样啦,需要花费时间走过.问该农民可不可能从某个点出 ...
- Android自定义组件系列【8】——遮罩文字动画
遮罩文字的动画我们在Flash中非常常见,作为Android的应用开发者你是否也想将这种动画做到你的应用中去呢?这一篇文章我们来看看如何自定义一个ImageView来实现让一张文字图片实现文字的遮罩闪 ...
- Cocos2d中的Menu使用
学习cocos2d-x中的菜单主要须要了解:菜单(CCMenu)和菜单项(CCMenuItem)以及CCMenuItem的详细子类. a. 以下来学习一下相关的类. 1. CCMenu 菜单,是CCL ...
- [Recompose] Render Nothing in Place of a Component using Recompose
Learn how to use the ‘branch’ and ‘renderNothing’ higher-ordercomponents to render nothing when a ce ...
- Windows Server 2012 R2 部署 Exchange 2013
我的环境在DC上 ,一般建议Exchange 增加DC 通过管理员权限执行PowerShell 来安装一些IIS组件, 安装命令例如以下: Install-WindowsFeature AS-HTTP ...