Counting Divisors

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Problem Description
In mathematics, the function d(n) denotes the number of divisors of positive integer n.

For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.

In this problem, given l,r and k, your task is to calculate the following thing :

(∑i=lrd(ik))mod998244353

 
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).

 
Output
For each test case, print a single line containing an integer, denoting the answer.
 
Sample Input
3
1 5 1
1 10 2
1 100 3
 
Sample Output
10
48
2302
 
Source

官方题解:

  唯一分解定理

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<stdlib.h>
#include<time.h>
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define bug(x) cout<<"bug"<<x<<endl; const int N=1e5+,M=1e6+,inf=;
const LL INF=1e18+,mod=; const int MAXN=;
int prime[MAXN];//保存素数
bool vis[MAXN];//初始化
int Prime(int n)
{
int cnt=;
memset(vis,,sizeof(vis));
for(int i=; i<n; i++)
{
if(!vis[i])
prime[cnt++]=i;
for(int j=; j<cnt&&i*prime[j]<n; j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
return cnt;
} LL num[M],ans[M]; int main()
{
int cnt=Prime();
int T;
scanf("%d",&T);
while(T--)
{
for(int i=; i<; i++)
num[i]=,ans[i]=;
LL l,r,K;
scanf("%lld%lld%lld",&l,&r,&K);
for(int q=; q<cnt; q++)
{
int i=prime[q];
LL L=(l%i==?l:(l/i+)*i);
for(LL j=L; j<=r; j+=i)
{
LL temp=j,base=;
int x=;
while(temp%i==)
{
x++;
temp/=i;
base*=i;
}
ans[j-l+]*=(1LL*K*x+)%mod;
ans[j-l+]%=mod;
num[j-l+]*=base;
}
}
for(LL i=l; i<=r; i++)
{
if(num[i-l+]!=i)
ans[i-l+]*=K+,ans[i-l+]%=mod;
}
LL out=;
for(LL i=l;i<=r;i++)
out+=ans[i-l+],out%=mod;
printf("%lld\n",out);
}
return ;
}

hdu 6069 Counting Divisors 筛法的更多相关文章

  1. HDU 6069 Counting Divisors —— 2017 Multi-University Training 4

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  2. HDU 6069 Counting Divisors

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  3. hdu 6069 Counting Divisors(求因子的个数)

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  4. HDU 6069 Counting Divisors(区间素数筛法)

    题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...

  5. HDU 6069 Counting Divisors (素数+筛法)

    题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7. 析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选, ...

  6. HDU 6069 Counting Divisors(唯一分解定理+因子数)

    http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{ ...

  7. 2017ACM暑期多校联合训练 - Team 4 1003 HDU 6069 Counting Divisors (区间素数筛选+因子数)

    题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positiv ...

  8. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

  9. HDU 6069 Counting Divisors(2017 Multi-University Training Contest - Team 4 )

    Output For each test case, print a single line containing an integer, denoting the answer.   Sample ...

随机推荐

  1. 前端框架VUE----箭头函数

    箭头函数 基本语法: ES6允许使用“箭头”(=>)定义函数 var f = a = > a //等同于 var f = function(a){ return a; } 如果箭头函数不需 ...

  2. Hybrid App中原生页面 VS H5页面(分享)

    本文部分转自  http://www.jianshu.com/p/00ff5664e000 现有3类主流APP,分别为:Web App.Hybrid App(混合模式移动应用,Hybrid有“混合的” ...

  3. java基础之包装类型

    包装类型引入该类型的原因:      因为基本数据类型不具备对象的特性,不能调用方法,所以有时需要将其转换为包装类. 包装类型有两大类方法:      1.将本类型和其它基本类型进行转换方法.    ...

  4. Eloquent JavaScript #11# The Document Object Model

    索引 Notes js与html DOM 在DOM树中移动 在DOM中寻找元素 改变Document 创建节点 html元素属性 布局 style CSS选择器 动画 Exercises Build ...

  5. Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException:

    ### Error updating database. Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You h ...

  6. JDK源码之LinkedHashSet

    LinkedHashSet是HashSet和LinkList结合产生的集合,集合中的元素互不相同,且元素采用双向链表进行连接. 1.定义 LinkedHashSet继承了HashSet并且实现了Set ...

  7. django变量使用-在模板中使用视图函数中的变量

    DTL语言,即django template language 第一次使用时,需要修改项目的setting.py文件,将其中TEMPLATES中的DIRS修改为os.path.join(BASE_DI ...

  8. 哪些个在 Sublime Text 下,"任性的" 好插件!

    我在sublime里面安装了以下有利于项目开发高效的插件: 1:SVN             源代码版本控制 2:LiveReload   浏览器实时刷新 3:jsMinifier     压缩 j ...

  9. Java 中断异常的正确处理方式

    处理InterruptedException 这个故事可能很熟悉:你正在写一个测试程序,你需要暂停某个线程一段时间,所以你调用 Thread.sleep().然后编译器或 IDE 就会抱怨说 Inte ...

  10. 同时import两个版本的QtQuick【1、2】,默认使用

    在同一个qml文件中,如果同时import了Qtquick1和2,那么谁在后面,谁起作用