topcoder srm 700 div1 -3
1、有$n$个人,编号1到$n$。将其平均分到$m$个房间中,每个房间$K$个人。现在知道每个房间编号最小的人的编号。对于给出的人$x$。问其可能在的房间有多少种?
思路:先假设其在某个房间,然后判断可行否。将按照编号从大到小每个房间依次考虑。大于这个房间最小编号的人都可以在这里,多了就存起来。
#include <string.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <set>
#include <algorithm>
#include <map>
using namespace std; const int N=55; class FindingFriend { public:
int find(int m,vector<int> a,int k) {
sort(a.begin(),a.end());
int n=a.size();
for(int i=0;i<n;++i) {
if(a[i]==k) return 1;
}
int b[1111];
for(int i=0;i<n;++i) {
if(i==n-1)
{
b[i]=n*m-a[i];
if(k>a[i]) --b[i];
}
else {
b[i]=a[i+1]-a[i]-1;
if(a[i]<k&&k<a[i+1]) --b[i];
}
}
--m;
int ans=0;
for(int i=0;i<n;++i) if(k>a[i]) {
int ok=1;
int tot=0;
++b[i];
for(int j=n-1;j>=0;--j) {
if(b[j]<m) {
if(m-b[j]>tot) {
ok=0; break;
}
tot-=m-b[j];
}
else if(b[j]>m) {
if(i==j) {
if(m==0) {
ok=0; break;
}
}
tot+=b[j]-m;
}
}
if(ok) ++ans;
--b[i];
}
return ans;
} };
2、

思路:把$f$函数看做树的边。最后的$k$个节点是一个闭包,即对于这个闭包中的任意一个节点$x$,$f(x)$也属于这个闭包。那么首先从选出$k$个节点,$C_{n}^{k}$。这$k$个节点组成闭包的方案数设为$s(k)$。假设现在知道了$s(k-1)$,那么对于第$k$个节点来说,要么自己是一个闭包,要么跟前$k-1$是一个闭包,所以$s(k)=(k-1)*s(k-1)+s(k-1)=k*s(k-1)$,所以$s(k)=k!$。
那么现在对于剩下的$n-k$个节点需要最后连接到选出的$k$个节点上。这里把选出的$k$ 个节点看做一棵树的树根,其余的$n-k$个节点加上树根现在有$n-k+1$个节点。其余的$n-k$个节点最后要连接到树根上。现在枚举连上树根的节点有$i$个,那么这$i$个节点最后连接到$k$个节点的方案数为$k^{i}$。而对于整个树来说,考虑它的prefer编码,由于树根上连上了$i$个节点,那么树根在最后的长度为$(n-k+1)-2$的prufer序列中出现了$i-1$次,所以有$C_{n-k-1}^{i-1}$种放置的方式,对于prufer序列的其余$(n-k-1)-(i-1)$个位置,每个位置可以放的节点种类为$n-k$,所以有$(n-k)^{n-k-i}$。所以答案为$C_{n}^{k}*k!*\sum_{i=1}^{n-k}k^{i}*C_{n-k-1}^{i-1}*(n-k)^{n-k-i}$。后半部分可以简化。
$\sum_{i=1}^{n-k}k^{i}*C_{n-k-1}^{i-1}*(n-k)^{n-k-i}$
$=\sum_{i=1}^{N}k^{i}*C_{N-1}^{i-1}*N^{N-i}$
$=k*\sum_{i=0}^{N-1}C_{N-1}^{i}*k^{i}*N^{N-1-i}$
$=k*(N+k)^{N-1}$
$=k*n^{n-k-1}$
#include <string.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <set>
#include <algorithm>
#include <map>
using namespace std; const int N=5005;
const int mod=1000000007; int C[N][N]; long long exGcd(long long a,long long b,long long &x,long long &y)
{
long long r,t;
if(b==0)
{
x=1;
y=0;
return a;
}
r=exGcd(b,a%b,x,y);
t=x;
x=y;
y=t-a/b*y;
return r;
} long long inverse(long long a,long long m)
{
long long x,y;
exGcd(a,m,x,y);
return (m+x%m)%m;
} long long f(int n) {
long long ans=1;
for(int i=1;i<=n;++i) ans=ans*i%mod;
return ans;
} class CrazyFunctions { public:
int count(int n,int k) {
long long ans=f(n)*inverse(f(k)*f(n-k)%mod,mod)%mod;
for(int i=1;i<=k;++i) ans=ans*i%mod;
if(k<n) {
ans=ans*k%mod;
for(int i=0;i<n-k-1;++i) ans=ans*n%mod;
} return (int)ans;
} };
topcoder srm 700 div1 -3的更多相关文章
- Topcoder SRM 643 Div1 250<peter_pan>
Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...
- Topcoder Srm 726 Div1 Hard
Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...
- topcoder srm 714 div1
problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...
- topcoder srm 738 div1 FindThePerfectTriangle(枚举)
Problem Statement You are given the ints perimeter and area. Your task is to find a triangle wi ...
- Topcoder SRM 602 div1题解
打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...
- Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串
Problem Statement The Happy Letter game is played as follows: At the beginning, several players ...
- Topcoder SRM 584 DIV1 600
思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...
- TopCoder SRM 605 DIV1
604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...
- topcoder srm 575 div1
problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...
随机推荐
- .net中ashx文件有什么用?功能有那些,一般用在什么情况下?
.ashx是“一般处理文件”.和aspx类似.但是这种文件要比aspx这种前台页面文件内容简单轻巧..ashx不提供前台展示的功能.也可以说它结合了.cs类文件而且又可以提供给.aspx文件做UI层的 ...
- PB中datewindow单双行显示不同颜色
调出datewindow,找到detail中的列,右击properties,左侧Background中的color属性添加 IF(MOD(GETROW(),2)=0,RGB( 255, 250, 20 ...
- Unity shader学习之菲涅耳反射
菲涅尔反射(Fresnel reflection),指光线照射物体表面时,一部分发生反射,一部分进入物体内部发生折射或散射,被反射的光和折射光之间存在一定的比率. 2个公式: 1. Schlick 菲 ...
- clientWidth,offsetWidth,scrollWidth区别
<html> <head> <title>clientWidth,offsetWidth,scrollWidth区别</title> </head ...
- sitecore系列教程之Sitecore个性化-体验概况概述
SITECORE 8:体验概况概述 什么是体验简介? 体验配置文件是Sitecore中的仪表板应用程序,它说明了客户体验和交互的关键区域,例如访问者详细信息,访问,活动,目标,配置文件,自动化等等. ...
- Lua 判断表是否为空方法
[1]判断表为空的方法 目前为止,Lua语言中判断table表是否为空有三种方式: (1)#table,当table为数组时直接返回table表的长度. (2)当table是字典时,返回table的长 ...
- 功能的显著性分析——GO Enrichment Analysis
Gene Ontology(GO)是基因功能国际标准分类体系.GO富集分析是对差异基因等按GO分类,并对分类结果进行基于离散分布的显著性分析.错判率分析.富集度分析,得到与实验目的有显著联系的.低 ...
- oracle 游标/函数/存储过程/触发器 表空间
--存储过程,循环create or replace procedure delTables(ename t_emp.ename%TYPE)AScon number;i NUMBER := 1;tab ...
- SQL8数据库定期自动备份
我们知道,利用SQL Server 2008数据库可以实现数据库的定期自动备份.方法是用SQL SERVER 2008自带的维护计划创建一个计划对数据库进行备份, 下面我们将SQL SERVER 20 ...
- LoggerFactory.getLogger用法
使用指定类初始化日志对象,在日志输出的时候,可以打印出日志信息所在类 如:Logger logger = LoggerFactory.getLogger(com.lz.Test.class); ...