1、有$n$个人,编号1到$n$。将其平均分到$m$个房间中,每个房间$K$个人。现在知道每个房间编号最小的人的编号。对于给出的人$x$。问其可能在的房间有多少种?

思路:先假设其在某个房间,然后判断可行否。将按照编号从大到小每个房间依次考虑。大于这个房间最小编号的人都可以在这里,多了就存起来。

#include <string.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <set>
#include <algorithm>
#include <map>
using namespace std; const int N=55; class FindingFriend { public:
int find(int m,vector<int> a,int k) {
sort(a.begin(),a.end());
int n=a.size();
for(int i=0;i<n;++i) {
if(a[i]==k) return 1;
}
int b[1111];
for(int i=0;i<n;++i) {
if(i==n-1)
{
b[i]=n*m-a[i];
if(k>a[i]) --b[i];
}
else {
b[i]=a[i+1]-a[i]-1;
if(a[i]<k&&k<a[i+1]) --b[i];
}
}
--m;
int ans=0;
for(int i=0;i<n;++i) if(k>a[i]) {
int ok=1;
int tot=0;
++b[i];
for(int j=n-1;j>=0;--j) {
if(b[j]<m) {
if(m-b[j]>tot) {
ok=0; break;
}
tot-=m-b[j];
}
else if(b[j]>m) {
if(i==j) {
if(m==0) {
ok=0; break;
}
}
tot+=b[j]-m;
}
}
if(ok) ++ans;
--b[i];
}
return ans;
} };

  

2、

思路:把$f$函数看做树的边。最后的$k$个节点是一个闭包,即对于这个闭包中的任意一个节点$x$,$f(x)$也属于这个闭包。那么首先从选出$k$个节点,$C_{n}^{k}$。这$k$个节点组成闭包的方案数设为$s(k)$。假设现在知道了$s(k-1)$,那么对于第$k$个节点来说,要么自己是一个闭包,要么跟前$k-1$是一个闭包,所以$s(k)=(k-1)*s(k-1)+s(k-1)=k*s(k-1)$,所以$s(k)=k!$。

那么现在对于剩下的$n-k$个节点需要最后连接到选出的$k$个节点上。这里把选出的$k$ 个节点看做一棵树的树根,其余的$n-k$个节点加上树根现在有$n-k+1$个节点。其余的$n-k$个节点最后要连接到树根上。现在枚举连上树根的节点有$i$个,那么这$i$个节点最后连接到$k$个节点的方案数为$k^{i}$。而对于整个树来说,考虑它的prefer编码,由于树根上连上了$i$个节点,那么树根在最后的长度为$(n-k+1)-2$的prufer序列中出现了$i-1$次,所以有$C_{n-k-1}^{i-1}$种放置的方式,对于prufer序列的其余$(n-k-1)-(i-1)$个位置,每个位置可以放的节点种类为$n-k$,所以有$(n-k)^{n-k-i}$。所以答案为$C_{n}^{k}*k!*\sum_{i=1}^{n-k}k^{i}*C_{n-k-1}^{i-1}*(n-k)^{n-k-i}$。后半部分可以简化。

$\sum_{i=1}^{n-k}k^{i}*C_{n-k-1}^{i-1}*(n-k)^{n-k-i}$
$=\sum_{i=1}^{N}k^{i}*C_{N-1}^{i-1}*N^{N-i}$
$=k*\sum_{i=0}^{N-1}C_{N-1}^{i}*k^{i}*N^{N-1-i}$
$=k*(N+k)^{N-1}$
$=k*n^{n-k-1}$

#include <string.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <set>
#include <algorithm>
#include <map>
using namespace std; const int N=5005;
const int mod=1000000007; int C[N][N]; long long exGcd(long long a,long long b,long long &x,long long &y)
{
long long r,t;
if(b==0)
{
x=1;
y=0;
return a;
}
r=exGcd(b,a%b,x,y);
t=x;
x=y;
y=t-a/b*y;
return r;
} long long inverse(long long a,long long m)
{
long long x,y;
exGcd(a,m,x,y);
return (m+x%m)%m;
} long long f(int n) {
long long ans=1;
for(int i=1;i<=n;++i) ans=ans*i%mod;
return ans;
} class CrazyFunctions { public:
int count(int n,int k) {
long long ans=f(n)*inverse(f(k)*f(n-k)%mod,mod)%mod;
for(int i=1;i<=k;++i) ans=ans*i%mod;
if(k<n) {
ans=ans*k%mod;
for(int i=0;i<n-k-1;++i) ans=ans*n%mod;
} return (int)ans;
} };

  

topcoder srm 700 div1 -3的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. vue中使用echarts

    1.下载依赖 cnpm i echarts -S 2.模块中引入 <template> <div class="analyzeSystem"> <di ...

  2. Hibernate框架的第四天

    ## Hibernate框架的第四天 ## ---------- **回顾:Hibernate框架的第三天** 1. 一对多关联关系映射 * JavaBean的编写 * 编写映射的配置文件 * 使用级 ...

  3. 漏洞复现:Struts2 远程代码执行漏洞(S2-033)

    docker pull medicean/vulapps:s_struts2_s2-033 docker run -d -p 80:8080 medicean/vulapps:s_struts2_s2 ...

  4. arc 092C 2D Plane 2N Points

    题意: 有n个红色的点和n个蓝色的点,如果红色的点的横坐标和纵坐标分别比蓝色的点的横坐标和纵坐标小,那么这两个点就可以成为一对友好的点. 问最多可以形成多少对友好的点. 思路: 裸的二分图匹配,对于满 ...

  5. greenplum presto impala选型与测评

    查看原文请至:https://my.oschina.net/hblt147/blog/1843028

  6. 【函数封装】javascript判断是否是微信浏览器

    //判断是否是微信浏览器的函数 function isWeiXin(){ //window.navigator.userAgent属性包含了浏览器类型.版本.操作系统类型.浏览器引擎类型等信息,这个属 ...

  7. Linux基础命令---显示文本look

    look 显示文件中以特定字符串开始的行.在look执行二进制搜索时,必须对文件中的行进行排序.如果未指定文件,则使用文件“/usr/share/dict/words“,只比较字母数字字符,忽略字母字 ...

  8. qt 提高图片加载速度

    一,将图片在pc上解析,然后将解析文件放到qrc文件中,读取qrc文件. 1,将图片解析后的二进制文件保存,源码如下, 下载地址:https://files.cnblogs.com/files/sen ...

  9. [转载]FileStream读写文件

    FileStream读写文件 FileStream类:操作字节的,可以操作任何的文件 StreamReader类和StreamWriter类:操作字符的,只能操作文本文件. 1.FileStream类 ...

  10. Hadoop HA方案调研

    原文成文于去年(2012.7.30),已然过去了一年,很多信息也许已经过时,不保证正确,与Hadoop学习笔记系列一样仅为留做提醒. ----- 针对现有的所有Hadoop HA方案进行调研,以时间为 ...