题目链接

双倍经验:BZOJ.4276.[ONTAK2015]Bajtman i Okrągły Robin(然而是个权限题。区间略有不同)

\(Description\)

有\(n\)个任务,完成一个任务需要\(1\)时刻,并会获得\(v_i\)的收益(只获得一次)。

每一时刻只能做一个任务,且每个任务只能在\([l_i,r_i]\)的时刻内做。求最大收益。

\(n\leq5000,l_i,r_i\leq10^8\)。

\(Solution\)

我为啥看不懂堆的\(O(n^2\log n)\)做法啊。。

(官方题解:https://wenku.baidu.com/view/c64d851ba8114431b90dd846.html)

首先可以跑费用流。因为要对区间连边所以要线段树优化。复杂度还是有点高,可以卡过BZOJ4276(BZOJ2034就算了 区间范围1e8)。

假设同一时刻有多个任务要完成时,会有冲突,我们自然是选价值最高的。

我们按收益从大到小排序,如果收益大的能选,那么一定先选(这只可能导导致同在这个时刻的任务不能选,但反正只能选一个,显然选最大的优)。

那现在的问题是,如何在必选某些任务的情况下,判断当前能不能选。

可以每次跑匈牙利判断一下,不过是\(n^3\),但是好像能过smg?

我们将任务区间按左端点排序,要选的任务应该尽量往前排,给后面腾时间。如果当前任务因为时间晚不能做,就尝试把前面的任务往后挤。

具体实现:对当前任务i枚举它区间的时刻,如果当前时刻没有任务就安排给它;

否则设当前时刻的任务为x,若r[x]>r[i],尝试将x往后挤,最后如果能把x匹配到另一个位置就成功匹配,否则i就不可能匹配了;

如果r[x]<=r[i],尝试把i往下一个时刻放。

时刻肯定不能直接枚举。我们发现有用的时刻最多只有\(n\)个。即每个位置的下一个可匹配的位置。

所以对区间离散化一下就行了。

贪心算法正确性的一个解释

考虑匈牙利算法,从大到小一个一个匹配,一个点一旦在匹配中,那么一直在匹配里面。

复杂度\(O(n^2)\)。

有个小优化是,上面说的x如果在之前被判为不可行,后面就没必要继续DFS它了。

//1400kb	460ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5005; int ref[N],lk[N],tag[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node
{
int l,r,v;
bool operator <(const Node &x)const{
return v>x.v;
}
}A[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int Lower(int x,int r)
{
int l=1,mid;
while(l<r)
if(ref[mid=l+r>>1]<x) l=mid+1;
else r=mid;
return l;
}
inline int Upper(int x,int r)
{
int l=1,mid;
while(l<r)
if(ref[mid=l+r>>1]<=x) l=mid+1;
else r=mid;
return l;
}
bool DFS(int x,int l,int r)
{
if(l>r) return 0;
int p=lk[l];
if(!p) return lk[l]=x,1;
if(A[p].r>A[x].r)
if(!tag[p]&&DFS(p,l+1,A[p].r)) return lk[l]=x,1;
else return tag[p]=1,0;
return DFS(x,l+1,r);
} int main()
{
int n=read();
for(int i=1; i<=n; ++i) A[i]=(Node){ref[i]=read(),read(),read()};
std::sort(ref+1,ref+1+n); ref[n+1]=1e9;
for(int i=2; i<=n; ++i) ref[i]=std::max(ref[i-1]+1,ref[i]);
for(int i=1; i<=n; ++i) A[i].l=Lower(A[i].l,n), A[i].r=Upper(A[i].r,n+1)-1; std::sort(A+1,A+1+n); long long ans=0;
for(int i=1; i<=n; ++i)
if(DFS(i,A[i].l,A[i].r)) ans+=A[i].v;
printf("%lld\n",ans); return 0;
}

BZOJ.2034.[2009国家集训队]最大收益(二分图匹配 贪心)的更多相关文章

  1. BZOJ 2034: [2009国家集训队]最大收益 [贪心优化 Hungary]

    2034: [2009国家集训队]最大收益 题意:\(n \le 5000\)个区间\(l,r\le 10^8\),每个区间可以选一个点得到val[i]的价值,每个点最多选1次,求最大价值 线段树优化 ...

  2. 【BZOJ2034】[2009国家集训队]最大收益 贪心优化最优匹配

    [BZOJ2034][2009国家集训队]最大收益 Description 给出N件单位时间任务,对于第i件任务,如果要完成该任务,需要占用[Si, Ti]间的某个时刻,且完成后会有Vi的收益.求最大 ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

  4. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  7. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  8. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

随机推荐

  1. 腾讯云YUM安装失效

    修改路由后,YUM安装失效,提示不能解析YUM源 yum clear chche yum makecache

  2. kindle转换工具-calibre

    kindle转换工具  calibre https://calibre-ebook.com/download_windows

  3. 修改centos和ubuntu ssh远程连接端口提升系统安全性

    #修改centos服务器ssh端口 sed -i 's/#Port 22/Port 38390/' /etc/ssh/sshd_config sed -i 's/^GSSAPIAuthenticati ...

  4. CentOS 6.5使用Corosync + pacemaker实现httpd服务的高可用

    Corosync:它属于OpenAIS(开放式应用接口规范)中的一个项目corosync一版本中本身不具备投票功能,到了corosync 2.0之后引入了votequorum子系统也具备了投票功能了, ...

  5. (转)eclipse 创建maven web项目

    1.新建Maven项目 1.1 File -> New -> Other 1.2 选择Maven Project ,单击Next 1.3 保持默认即可,单击Next 1.4 选择Arche ...

  6. Day5-----------------------系统监控

    1.top 命令 查看终端信息 who 显示终端用户有哪些 bash 开启终端进程 PID:进程身份证 buffer:缓冲区 cache:高速缓存 进程:动起来的文件,CPU调用运行的过程 2.fre ...

  7. Python-html css 盒模型

    <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>ht ...

  8. 转:10分钟了解JS堆、栈以及事件循环的概念

    https://juejin.im/post/5b1deac06fb9a01e643e2a95?utm_medium=fe&utm_source=weixinqun 前言 其实一开始对栈.堆的 ...

  9. 解析神奇的 Object.defineProperty

    这个方法了不起啊..vue.js是通过它实现双向绑定的..而且Object.observe也被草案发起人撤回了..所以defineProperty更有必要了解一下了. 几行代码看他怎么用 var a= ...

  10. 【转载】linux下升级npm以及node

    原文:http://blog.csdn.net/qq_16339527/article/details/73008708 npm升级 废话不多说,直接讲步骤.先从容易的开始,升级npm. npm这款包 ...