04-树5 Root of AVL Tree + AVL树操作集
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer NN (\le 20≤20) which is the total number of keys to be inserted. Then NN distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
/*!
* \file 04-树5 Root of AVL Tree.cpp
*
* \author ranjiewen
* \date 2017/04/01 18:54
*
*
*/ #include <stdio.h>
#include <stdlib.h> typedef struct AVLNode *Position;
typedef Position AVLTree;
typedef int ElementType;
struct AVLNode{
ElementType Data;
AVLTree Left;
AVLTree Right;
int Height; //树高
}; int Max(int a, int b)
{
return a > b ? a : b;
} //可将程序中用到的GetTreeHeight()替换掉
int GetHeight(Position p)
{
if (!p)
return -;
return p->Height;
} int GetTreeHeight(AVLTree T)
{
int HL = , HR = ;
int Max_H = ;
if (T)
{
if (T->Left)
{
HL = GetTreeHeight(T->Left);
}
if (T->Right)
{
HR = GetTreeHeight(T->Right);
}
Max_H = (HL > HR) ? (HL + ) : (HR + );
}
return Max_H;
} AVLTree SingleLeftRotation(AVLTree A)
{
//A必须有一个左子结点B
//将A与B做左单旋,更新A,B的高度,返回新的根节点B
AVLTree B = A->Left;
A->Left = B->Right;
B->Right = A;
A->Height = Max(GetTreeHeight(A->Left), GetTreeHeight(A->Right)) + ;
B->Height = Max(GetTreeHeight(B->Left), A->Height) + ;
return B;
} AVLTree SingleRightRotation(AVLTree A)
{
//A必须有一个右子节点B
//将A,B做右单旋,更新A,B的高度,返回新的根节点B
AVLTree B = A->Right;
A->Right = B->Left;
B->Left = A;
A->Height = Max(GetTreeHeight(A->Left),GetTreeHeight(A->Right))+;
B->Height = Max(GetTreeHeight(B->Right), A->Height) + ; return B;
} AVLTree DoubleLeftRightRotation(AVLTree A)
{
//A必须有一个左子节点B,且B必须有一个右子节点C
//将A,B与C做两次单旋,返回新的根节点C //将B,C做右单旋,C被返回
A->Left = SingleRightRotation(A->Left);
//将A与C做左单旋,C被返回
return SingleLeftRotation(A);
} AVLTree DoubleRightLeftRotation(AVLTree A)
{
//A必须有一个右子节点B,且B必须有一个左子节点C //将B,C做左单旋,C被返回
A->Right = SingleLeftRotation(A->Right);
//将A,C做右单旋,C被返回
return SingleRightRotation(A);
} //将x插入到AVL树中,并且返回调整后的AVL树
AVLTree Insert(AVLTree T, ElementType x)
{
if (!T)
{
//若为空树,则新建包含一个结点的树
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->Data = x;
T->Left = T->Right = NULL;
T->Height = ;
}
else if (x<T->Data)
{
//插入T的左子树
T->Left = Insert(T->Left,x);
//如果需要左旋
if (GetTreeHeight(T->Left)-GetTreeHeight(T->Right)==)
{
if (x < T->Left->Data) //需要左单旋
{
T = SingleLeftRotation(T);
}
else
T = DoubleLeftRightRotation(T); //左-右双旋
}
}
else if (x>T->Data)
{
T->Right = Insert(T->Right,x);
//如果需要右旋
if (GetTreeHeight(T->Left)-GetTreeHeight(T->Right)==-)
{
if (x>T->Right->Data) //右单旋
{
T = SingleRightRotation(T);
}
else
{
T = DoubleRightLeftRotation(T); //右-左双旋
}
}
}
// else x==T->Data 无需插入 //别忘了更新树高
T->Height = Max(GetTreeHeight(T->Left), GetTreeHeight(T->Right)) + ;
return T;
} static int FindMin(AVLTree T){
if (T == NULL){
return -;
}
while (T->Left != NULL){
T = T->Left;
}
return T->Data;
} //返回-1表示,树中没有该数据,删除失败,
int Delete(AVLTree *T, ElementType D){ //指针的指针
static Position tmp;
if (*T == NULL){
return -;
}
else{
//找到要删除的节点
if (D == (*T)->Data){
//删除的节点左右子支都不为空,一定存在前驱节点
if ((*T)->Left != NULL && (*T)->Right != NULL){ D = FindMin((*T)->Right);//找后继替换
(*T)->Data = D;
Delete(&(*T)->Right, D);//然后删除后继节点,一定成功 //在右子支中删除,删除后有可能左子支比右子支高度大2
if (GetHeight((*T)->Left) - GetHeight((*T)->Left) == ){
//判断哪一个左子支的的两个子支哪个比较高
if (GetHeight((*T)->Left->Left) >= GetHeight((*T)->Left->Right)){
*T=SingleRightRotation(*T);
}
else{
*T = DoubleLeftRightRotation(*T);
/*LeftRotate(&(*T)->left);
RightRotate(T);*/
}
}
}
else
if ((*T)->Left == NULL){//左子支为空
tmp = (*T);
(*T) = tmp->Right;
free(tmp);
return ;
}
else
if ((*T)->Right == NULL){//右子支为空
tmp = (*T);
(*T) = tmp->Right;
free(tmp);
return ;
}
}
else
if (D > (*T)->Data){//在右子支中寻找待删除的节点
if (Delete(&(*T)->Right, D) == -){
return -;//删除失败,不需要调整,直接返回
}
if (GetHeight((*T)->Left) - GetHeight((*T)->Right) == ){
if (GetHeight((*T)->Left->Left) >= GetHeight((*T)->Left->Right)){
*T=SingleRightRotation(*T);
}
else{
*T = DoubleLeftRightRotation(*T);
/*LeftRotate(&(*T)->left);
RightRotate(T);*/
}
}
}
else
if (D < (*T)->Data){//在左子支中寻找待删除的节点
if (Delete(&(*T)->Left, D) == -){
return -;
}
if (GetHeight((*T)->Right) - GetHeight((*T)->Right) == ){
if (GetHeight((*T)->Right->Right) >= GetHeight((*T)->Right->Left)){
*T=SingleLeftRotation(*T);
}
else{
*T = DoubleRightLeftRotation(*T);
/*RightRotate(&(*T)->right);
LeftRotate(T);*/
}
}
}
}
//更新当前节点的高度
(*T)->Height = Max(GetHeight((*T)->Left), GetHeight((*T)->Right)) + ;
//printf("%d\n", (*T)->Data);
return ;
} int main()
{
int N,data;
AVLTree root=nullptr;
scanf("%d", &N);
for (int i = ; i < N;i++)
{
scanf("%d", &data);
root = Insert(root, data);
}
printf("%d\n",root->Data); Delete(&root, );
printf("%d\n", root->Data); return ;
}
AVL树原理及实现 +B树
04-树5 Root of AVL Tree + AVL树操作集的更多相关文章
- PAT 1066 Root of AVL Tree[AVL树][难]
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...
- 1066 Root of AVL Tree (25分)(AVL树的实现)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级题解-1066. Root of AVL Tree (25)-AVL树模板题
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6803291.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- 04-树5 Root of AVL Tree
平衡二叉树 LL RR LR RL 注意画图理解法 An AVL tree is a self-balancing binary search tree. In an AVL tree, the he ...
- 1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child su ...
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT 甲级 1066 Root of AVL Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805404939173888 An AVL tree is a self- ...
随机推荐
- eclipse安装主题插件(Color Theme)
点击“Help”--> Install New Software Name:ColorThemeLocation:http://eclipse-color-theme.github.io/upd ...
- 并发之atomicInteger与CAS机制
并发之atomic与CAS自旋锁 通过前几章的讲解我们知道i++这种类似操作是不安全的.针对这种情况,我们可能会想到利用synchronize关键字实现线程同步,保证++操作的原子性,的确这是一种有效 ...
- Mac配置Node.js环境
打开终端输入命令:(安装brew) ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/mast ...
- hdu 2112 map+Dijkstra
无向图 用map 起点和终点可能一样 数组不能开太大 WA了好多发 Sample Input6xiasha westlake //起点 终点xiasha station 60xiasha Shoppi ...
- 为什么Nginx性能比Apache高
Nginx的工作原理 nginx在启动后,会有一个master进程和多个worker进程.master进程主要用来管理worker进程,包含:接收来自外界的信号,向各worker进程发送信号,监控wo ...
- Python sys.stdout sys.stdin
引用自:https://www.cnblogs.com/keye/p/7859181.html 引用自:https://blog.csdn.net/sxingming/article/details/ ...
- Teamviewer 远程控制时 无法正常操作鼠标点击
其中一种可能: 本机开启了360的64位Intel-VT核晶防护后,用Teamviewer远程到本机,远程电脑无法操作本机的鼠标点击(左右键都不行),查看日志显示拦截了模拟按键.关闭核晶防护就可以正常 ...
- hdu1573 X问题【中国剩余定理】
<题目链接> X问题 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod ...
- IntelliJ IDEA关于logger的live template配置
1.安装 log support2插件 2.配置log support2 由于项目中的日志框架是公司自己封装的,所以还需要自己手动改一下 log support2插件生成的live template ...
- 在网站中使用Bing Translator插件翻译文章。
前一阵子给项目增加了翻译的功能,用的是Bing Translator Widget,今天看见有个兄弟写自定义自己的博客,我就尝试着把这个插件加到了自己的博客中.还真的好用.大家先看下效果,觉得好的请继 ...