参见 基于中文人员特征的性别判定方法  理论,告诉一个名字,来猜猜是男是女,多多少少有点算命的味道。此命题是一种有监督的学习方法,从标注好的训练数据学习到一个预测模型,然后对未标注的数据进行预测。

1、首先,有监督的学习方法,就需要这样一批标注数据:大量的人名,以及其性别。训练数据集参考 SofaSofa-数据科学社区 及其它网页爬取的数据:

2、对下载的数据进行清洗及特征提取,其流程如下:

  • 根据姓氏辞典把姓氏去掉,留下不带姓氏的名字;
  • 参见上一篇论文,特征有三个维度,分别用X1,X2,X3(=X1X2)表示。如果是单字名,则X1为空格,X2为单字名,X3就是前两者拼接X1X2,清洗后的数据如下,gname (1:男,0:女)
  • 数据清洗示例代码:
  • remove(list = ls())
    space_path <- c("E:\\Teld_Work\\15_UserProfile\\srccode")
    setwd(space_path)
    Sys.setlocale(category = "LC_ALL",local="chinese") ##读取本地数据
    ##数据下载地址:http://sofasofa.io/competition.php?id=3& 及其它网络地址爬取
    tbl1 <- read.table(file = "train.txt",header = TRUE,sep = ",",fill = TRUE,encoding = "UTF-8")
    df <- data.frame(tbl1) ##将数据转入SqlServer进行清洗
    chl <- odbcConnect("testsql", uid = "sqladmin", pwd = "123456a?")
    sqlSave(chl,df,tablename = "U_demo")
    close(chl) ##获取清洗完成的数据
    library(RODBC)
    chl <- odbcConnect("testsql", uid = "sqladmin", pwd = "123456a?")
    df <- sqlQuery(chl,"select fn1,fn2,fn,gname from U_SexByNameSample")
    close(chl) ##将数据转存为本地rda文件
    save(df,file = "sexbyname.rda")
  • 始于贝叶斯公式,对于名字X1X2,工程实现中,在预测阶段,可能会遇到一些特征在训练样本中没有,则需要做一下平滑(比如分子加一个很小的值),不然男女概率都为0,无法预测。
    • P(男|X1X2)=P(男)*P(X1|男)*P(X2|男)*P(X1X2|男)
    • P(女|X1X2)=P(女)*P(X1|女)*P(X2|女)*P(X1X2|女)
    • 特别注意的是,P(X1|男)表示的是训练样本中,男性用户中,名字第一个字出现X1的概率,如果第二个字出现X1,不算在这里。
  • 示例代码如下:
  • remove(list = ls())
    space_path <- c("E:\\Teld_Work\\15_UserProfile\\srccode")
    setwd(space_path) ##姓名拆分
    buildVe <- function(name)
    {
    len <- nchar(name)
    f2 <- substr(name,len,len)
    f1 <- c("")
    if (len > 2)
    {
    f1 <- substr(name,len-1,len-1)
    }
    fn <- paste0(f1,f2) return(c(f1,f2,fn))
    } #模型
    naive.bayes.prediction <- function(name)
    {
    if (exists("sexDf") == FALSE)
    {
    load("sexbyname.rda")
    } smv <- 0.001; #解决特征在样本中没有的场景
    vec <- buildVe(name); #计算先验概率
    sex.M <- (sum(sexDf[,4] == "") + smv)/ length(sexDf[,4]);
    sex.F <- (sum(sexDf[,4] == "") + smv)/ length(sexDf[,4]); # 计算 name 是男性概率
    pred.M <-
    (sum((sexDf[,1] == vec[1]) & (sexDf[,4] == "")) + smv) / sum(sexDf[,4] == "") *
    (sum((sexDf[,2] == vec[2]) & (sexDf[,4] == "")) + smv) / sum(sexDf[,4] == "") *
    (sum((sexDf[,3] == vec[3]) & (sexDf[,4] == "")) + smv) / sum(sexDf[,4] == "") *
    sex.M; # 计算 name 是女性概率
    pred.F <-
    (sum((sexDf[,1] == vec[1]) & (sexDf[,4] == ""))+ smv) / sum(sexDf[,4] == "") *
    (sum((sexDf[,2] == vec[2]) & (sexDf[,4] == ""))+ smv) / sum(sexDf[,4] == "") *
    (sum((sexDf[,3] == vec[3]) & (sexDf[,4] == ""))+ smv) / sum(sexDf[,4] == "") *
    sex.F; ## return(list(post.pred.M = pred.M,
    ## post.pred.F = pred.F,
    ## prediction = ifelse(pred.M >= pred.F, "男", "女")));
    return(paste0("pred.M:",pred.M,",pred.F:",pred.F,"; --prediction:",ifelse(pred.M >= pred.F, "男", "女")))
    }
  • 在实际应用中,这个模型适合于我们知道用户姓名但是不知道性别的情况,比如某电商网站,一般情况用户订单中填的收货人姓名都是真实的,注册信息中可能带有性别但是不靠谱可能是乱填的,随便写俩人员通过模型预估结果如下:
  • > naive.bayes.prediction("刘德华")
    [1] "pred.M:2.03045549425324e-09,pred.F:1.68712051662787e-11; --prediction:男"
    > naive.bayes.prediction("张学友")
    [1] "pred.M:2.24279371989392e-11,pred.F:2.30827962001087e-16; --prediction:男"
    > naive.bayes.prediction("金星")
    [1] "pred.M:6.28564627624871e-09,pred.F:7.02613664124613e-10; --prediction:男"
    > naive.bayes.prediction("李玉刚")
    [1] "pred.M:6.06865747851669e-11,pred.F:1.22259348253025e-15; --prediction:男"
    > naive.bayes.prediction("李冰冰")
    [1] "pred.M:4.61521485457943e-11,pred.F:1.35846175847352e-10; --prediction:女"
    > naive.bayes.prediction("章子怡")
    [1] "pred.M:4.51645469372974e-09,pred.F:5.16427477696052e-09; --prediction:女"
    >

R基于Bayes理论实现中文人员特性的性别判定的更多相关文章

  1. R学习:《机器学习与数据科学基于R的统计学习方法》中文PDF+代码

    当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通. <机器学习与数据科学基于R的统计学习方法>试图指导读者掌握如何完成涉及机器学习的数据科学项目.为数据科学家 ...

  2. Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。

    用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...

  3. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  4. 基于MMSeg算法的中文分词类库

    原文:基于MMSeg算法的中文分词类库 最近在实现基于lucene.net的搜索方案,涉及中文分词,找了很多,最终选择了MMSeg4j,但MMSeg4j只有Java版,在博客园上找到了*王员外*(ht ...

  5. Atitit atiplat_reader 基于url阅读器的新特性

    Atitit atiplat_reader 基于url阅读器的新特性 1.1. feature功能特性1 1.2. note1 1.1. feature功能特性 支持url数据源,实际就是只支持一层连 ...

  6. 基于深度学习的中文语音识别系统框架(pluse)

    目录 声学模型 GRU-CTC DFCNN DFSMN 语言模型 n-gram CBHG 数据集 本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字. 声学模型 ...

  7. 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅

    Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...

  8. 基于Text-CNN模型的中文文本分类实战

    Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...

  9. 《基于SD-SEIR模型的实验室人员不安全行为传播研究》

    My Focus:基于SD-SEIR模型的实验室人员不安全行为的传播; 建模与实验仿真 Title: Study on Porpagation of Unsafe Bhavior of Laborat ...

随机推荐

  1. python day03作业

  2. swiper 组件的高度设置问题

    1.swiper组件直接运用时, .content>swiper{height:100%} 是不起作用的. 正确的做法是: swiper{ height: 100vh; } // 或者 < ...

  3. meson 中调用shell script

    meson 中有时需要调用其他脚本语言,加之对meson build system接口和原理不熟悉,无奈只有静心学习meson 官方文档,终于皇天不负有心人让我找到了: run_command() 只 ...

  4. SEGMENTATION FAULT IN LINUX 原因与避免

    https://www.cnblogs.com/no7dw/archive/2013/02/20/2918372.html

  5. 双向重定向tee命令详解

    vim一般在训练网络的时候需要保存log文件,同时需要在屏幕上网络的输出信息,在shell文件中常常会看到如下代码 执行的命令 2>&1 | tee log.txt tee是linux中 ...

  6. SLES 12 SP2 安装src.rpm软件包

      系统型号: SUSE Enterprise  mv systemd-228-117.12.src.rpm   systemd     cd systemd 执行下面的命令解压:     rpm2c ...

  7. 使用定时器通过改变图片的src来切换图片

    点击以后开始自动切换图片 $("#page3_cover_1_back").click(function(){ var i=3; var haha=setInterval(func ...

  8. linux 执行脚本

    crontab -e 直接编辑定时脚本 保存后,在/var/spool/cron/下自动生成一个以用户名命名的脚本文件.

  9. awk 相关的复习

    1. awk 引用外部变量: aa=666  echo "." | awk -v GET_A=$aa '{print GET_A}' . sort -n fuxi.awk |awk ...

  10. 环境变量、cp、mv、cat 等命令

    1.环境变量: PATH 个人理解 环境变量,即是所有命令文件所存放的目录,或是人为的定义的目录,(命令文件所存放的目录,当输入一个命令的时候,系统会自动找到且不报错,并不需要输入绝对路径,来运行相关 ...