import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt BATCH_START = 0
TIME_STEPS = 20
BATCH_SIZE = 50
INPUT_SIZE = 1
OUTPUT_SIZE = 1
CELL_SIZE = 10
LR = 0.006
BATCH_START_TEST = 0 def get_batch():
global BATCH_START, TIME_STEPS
xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS
return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs] class LSTMRNN(object):
def __init__(self, n_steps, input_size, output_size, cell_size, batch_size): self.n_steps = n_steps
self.input_size = input_size
self.output_size = output_size
self.cell_size = cell_size
self.batch_size = batch_size
with tf.name_scope('inputs'):
self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')
with tf.variable_scope('in_hidden'):
self.add_input_layer()
with tf.variable_scope('LSTM_cell'):
self.add_cell()
with tf.variable_scope('out_hidden'):
self.add_output_layer()
with tf.name_scope('cost'):
self.compute_cost()
with tf.name_scope('train'):
self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost) def add_input_layer(self,):
l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D')
Ws_in = self._weight_variable([self.input_size, self.cell_size]) bs_in = self._bias_variable([self.cell_size,]) with tf.name_scope('Wx_plus_b'):
l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in
self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D') def add_cell(self):
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True) with tf.name_scope('initial_state'):
self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False) def add_output_layer(self):
l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D')
Ws_out = self._weight_variable([self.cell_size, self.output_size])
bs_out = self._bias_variable([self.output_size, ])
# shape = (batch * steps, output_size)
with tf.name_scope('Wx_plus_b'):
self.pred = tf.matmul(l_out_x, Ws_out) + bs_out def compute_cost(self):
losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[tf.reshape(self.pred, [-1], name='reshape_pred')],
[tf.reshape(self.ys, [-1], name='reshape_target')],
[tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],
average_across_timesteps=True,
softmax_loss_function=self.ms_error,
name='losses'
)
with tf.name_scope('average_cost'):
self.cost = tf.div(
tf.reduce_sum(losses, name='losses_sum'),
self.batch_size,
name='average_cost')
tf.summary.scalar('cost', self.cost) def ms_error(self, y_target, y_pre):
return tf.square(tf.sub( y_target, y_pre)) def _weight_variable(self, shape, name='weights'):
initializer = tf.random_normal_initializer(mean=0., stddev=1.,)
return tf.get_variable(shape=shape, initializer=initializer, name=name) def _bias_variable(self, shape, name='biases'):
initializer = tf.constant_initializer(0.1)
return tf.get_variable(name=name, shape=shape, initializer=initializer) if __name__ == '__main__': model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
sess = tf.Session()
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter("niu0127/logs0127",sess.graph)
sess.run(tf.global_variables_initializer())

TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu的更多相关文章

  1. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  2. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  3. TF:利用TF的train.Saver将训练好的variables(W、b)保存到指定的index、meda文件—Jason niu

    import tensorflow as tf import numpy as np W = tf.Variable([[2,1,8],[1,2,5]], dtype=tf.float32, name ...

  4. TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu

    import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...

  5. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  6. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  7. Tensorboard可视化

    # -*- coding: utf-8 -*-"""Created on Sun Nov 5 09:29:36 2017 @author: Admin"&quo ...

  8. tensorboard可视化节点却没有显示图像的解决方法---注意路径问题加中文文件名

    问题:完成graph中的算子,并执行tf.Session后,用tensorboard可视化节点时,没有显示图像 1. tensorboard 1.10 我是将log文件存储在E盘下面的,所以直接在E盘 ...

  9. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

随机推荐

  1. Gym - 101775A Chat Group 组合数+逆元+快速幂

    It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: ...

  2. 清北学堂 清北-Day1-R2-监听monitor

    题目描述 [背景] 不阅读本题的[背景]并不影响通过本题. 三体信息中没有包含对三体⼈⽣物形态的任何描述,⼈类要在四百多年以后才能真正看到三体⼈.在阅读信息时,叶⽂洁只能把三体⼈想象成⼈类的形象. 1 ...

  3. ajax控件无法使用 iis配置及web修改(转载)

    1.Web.config配置问题:将Web.config中的相关节配置成如下,然后重新编译你的程序:<httpHandlers><remove verb="*" ...

  4. Confluence 6 WebDAV 禁用严格路径检查

    如果你在你的 WebDAV 客户端发现了一些不正常的现象,例如文件夹在 Confluence 中是存在的,但是在你客户端下载的文件中就不存在了.你可以禁用  WebDAV 插件中的严格路径检查选项,这 ...

  5. Confluence 6 恢复一个站点问题解决

    如果你在导入的时候遇到了问题,检查下面的一些提示. 你的文件太大而不能上传?这个是非常常见的错误.出现的原因是备份文件不能在规定的时间内上传到服务器上.为了避免这个错误,放置你的导出文件到  < ...

  6. bat如何提取文本指定行的内容

    背景:使用CTS框架运行完测试后,会在logs中生成devices_log和host_log,在results中生成相应的结果(报告).根据报告信息我们可以得知失败的用例,但是却不能知道为什么用例会失 ...

  7. linux下安装nginx及初步认识

    linux下安装配置nginx nginx:是一个高性能的反向代理服务器正向代理代理的是客户端,反向代理代理的是服务端. 这里以nginx-1.12.2版本为例子 1.首先去官网下载nginx-1.1 ...

  8. AI学习吧-支付宝支付

    支付宝支付流程 1.接收前端发过来的贝里数和结算金额 2.检查贝里数是否够用 3.获取结算中心的课程并应用优惠券 4.应用未绑定课程的优惠券 5.判断总价格减去优惠券价格是否等于实际支付金额 6.生成 ...

  9. pycharm导入本地py文件时,模块下方出现红色波浪线时如何解决

    有时候导入本地模块或者py文件时,下方会出现红色的波浪线,但不影响程序的正常运行,但是在查看源函数文件时,会出现问题 问题如下:  解决方案: 1. 进入设置,找到Console下的Python Co ...

  10. Deap thinking

    它使任何人离任何问题的答案间的距离变得只有点击一下鼠标这么远! ---------<美国周刊> ---------周志华<机器学习>   所以我们更应该学会Deep Think ...