原文链接http://www.cnblogs.com/zhouzhendong/p/8081100.html


题目传送门 - BZOJ1131


题意概括

  给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大。


题解

  嘻,这题不卡栈。

  假设以1为根

  先跑一遍dfs,算出每一个子树的节点数size,同时算出以1为根节点的深度和。

  然后再跑一遍dfs,这一回,我们就可以算答案了。

  假设我们要把树根从一条边的一个节点移向另一个节点,那么,这两个节点为根的答案差就是这条边两端的节点个数差。因为其中一个节点代表的子树上的节点都要多走一步到根,而另一边少走一步。这样就可以在O(n)的时间复杂度内solve这一题了。


代码

#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=1000005;
struct Gragh{
int cnt,y[N*2],nxt[N*2],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,size[N],ans;
LL sum[N],res[N];
void dfs1(int rt,int pre){
size[rt]=1,sum[rt]=0;
for (int i=g.fst[rt];i;i=g.nxt[i])
if (g.y[i]!=pre){
int s=g.y[i];
dfs1(s,rt);
size[rt]+=size[s];
sum[rt]+=sum[s];
}
sum[rt]+=size[rt]-1;
}
void dfs2(int rt,int pre){
res[rt]=res[pre]-size[rt]+(n-size[rt]);
if (!ans||res[rt]>res[ans]||(res[rt]==res[ans]&&rt<ans))
ans=rt;
for (int i=g.fst[rt];i;i=g.nxt[i])
if (g.y[i]!=pre)
dfs2(g.y[i],rt);
}
int main(){
g.clear();
scanf("%d",&n);
for (int i=1,a,b;i<n;i++){
scanf("%d%d",&a,&b);
g.add(a,b);
g.add(b,a);
}
dfs1(1,0);
ans=0;
res[0]=sum[1]+n;
dfs2(1,0);
printf("%d",ans);
return 0;
}

  

BZOJ1131 [POI2008]Sta 其他的更多相关文章

  1. BZOJ1131 POI2008 Sta 【树形DP】

    BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...

  2. [BZOJ1131][POI2008] Sta 树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  3. [BZOJ1131/POI2008]Sta树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  4. bzoj1131: [POI2008]Sta

    思路:首先先求出以1为根的答案,然后考虑由i转移到i的儿子的答案的变化,显然以son[i]为根的子树的所有结点的深度都会减一,其余的点的深度都会加一,然后就可以直接O(n)求出所有结点的答案,然后取m ...

  5. BZOJ1131[POI2008]Sta——树形DP

    题目描述 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 输入 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. 输出 输出你所找到的点,如果具有 ...

  6. bzoj千题计划151:bzoj1131: [POI2008]Sta

    http://www.lydsy.com/JudgeOnline/problem.php?id=1131 dp[i]=dp[fa[i]]-son[i]+n-son[i] #include<cst ...

  7. [bzoj1131][POI2008]Sta_树形dp

    Sta bzoj-1131 POI-2008 题目大意:给定一棵n个点的树,求一个根,使得深度和最大. 注释:$1\le n \le 10^6$. 想法:扭一扭即可. 扭的时候看看这个点当没当过根. ...

  8. 【BZOJ-1131】Sta 树形DP

    1131: [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1150  Solved: 378[Submit][Status] ...

  9. BZOJ 1131: [POI2008]Sta( dfs )

    对于一棵树, 考虑root的答案向它的孩子转移, 应该是 ans[son] = (ans[root] - size[son]) + (n - size[son]). so , 先 dfs 预处理一下, ...

随机推荐

  1. 图解Metrics, tracing, and logging

    Logging,Metrics 和 Tracing   最近在看Gophercon大会PPT的时候无意中看到了关于Metrics,Tracing和Logging相关的一篇文章,凑巧这些我基本都接触过, ...

  2. Confluence 6 配置推荐更新邮件通知默认的初始化设置

    Confluence 为订阅者发送常规邮件报告,这个邮件报告中包含有用户具有查看权限的空间的最新的内容.这个被称为 推荐更新(Recommended Updates)通知. 如果你具有 Conflue ...

  3. python之路第二天

    为何要有操作系统 为了让程序员更轻松的完成命令电脑工作而存在的,控制硬件,服务于软件. 操作系统的位置 操作系统位于软件和硬件之间.操作系统由内核(运行于内核态,控制硬件)和系统调用(运行于用户态,为 ...

  4. bzoj 1951

    这道题告诉了我们一个很重要的道理:看到题,先想明白再动手! 题意:求对999911659取模的值 首先,由于n的数据范围不是很大(至少不是很大),所以可以O()枚举所有约数分别求组合数 但是有个问题: ...

  5. 安装mysql后在/var/log/mysqld.log 中找不到临时密码

    centos7通过yum装完mysql,使用grep 'temporary password' /var/log/mysqld.log找不到root密码打开mysqld.log中根本没有tempora ...

  6. 常用的web服务器软件整理

    (1)ApacheApache是世界使用排名第一的Web服务器软件.它可以运行在几乎所有广泛使用的计算机平台上.Apache源于NCSAhttpd服务器,经过多次修改,成为世界上最流行的Web服务器软 ...

  7. ajax---获取XMLHttpReuquest 对象

    ajax的异步和同步(Asynchronus Javascript and Xml) 同步:一个时间段只能干一件事:即按部就班,一件事一件事的做. 异步:相同的时间段做多件事,同时进行.依靠 XMLH ...

  8. 论文阅读笔记十五:Pyramid Scene Parsing Network(CVPR2016)

    论文源址:https://arxiv.org/pdf/1612.01105.pdf tensorflow代码:https://github.com/hellochick/PSPNet-tensorfl ...

  9. Idea和PyCharm激活破解

    1. 先去百度去官网下载专业版IDE, Idea 和PyCharm激活方法一样 2. 下载破解包, 点击下载 3. 将下载的jar包放到这个安装目录的bin目录下面 4. 在bin目录下面的文件pyc ...

  10. Ajax增删改查-----------查

    查询所有 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...