LeetCode竞赛题:笨阶乘(我们设计了一个笨阶乘 clumsy:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。)
通常,正整数 n 的阶乘是所有小于或等于 n 的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1。
相反,我们设计了一个笨阶乘 clumsy:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。
例如,clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法
和除法步骤,并且按从左到右处理乘法和除法步骤。
另外,我们使用的除法是地板除法(floor division),所以 10 * 9 / 8 等于 11。这保证结果是一个整数。
实现上面定义的笨函数:给定一个整数 N,它返回 N 的笨阶乘。
示例 1:
输入:4
输出:7
解释:7 = 4 * 3 / 2 + 1
示例 2:
输入:10
输出:12
解释:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
提示:
1 <= N <= 10000
-2^31 <= answer <= 2^31 - 1 (答案保证符合 32 位整数。)
思路:将*/看成一个整体 +看成一个整体 - 号也看成一个整体,其实最优解是将*/+-看成一个整体后面附上csdn地址,实现自己思路代码如下:
public static int clumsy(int n) {
if(n < 3) return n;
int rst = n;
//count用来表示该过程用+-*/哪一个
int count = 1;
List<Integer> list = new ArrayList<Integer>();
for(int i = n-1;i>0;i--){
//%4余1我们相乘,如果i = 1时将计算结果加入list集合
if(count % 4 == 1){
rst *= i;
count++;
if(i == 1){
list.add(rst);
} }
//%4余2我们相除,并且将计算结果加入list集合,该结果表示n*(n-1)/(n-2)
else if(count % 4 == 2){
rst /= i;
list.add(rst);
count++;
}
//%4余3我们相加,将计i加入list集合,与list集合前一个元素相加
else if(count % 4 == 3){
list.add(i);
count++;
}
//%4余0我们相减,将i赋给rst,
else if(count % 4 == 0){
rst = i;
if(i == 1){
list.add(rst);
}
count++;
}
}
rst = list.get(0);
int tmp = 1;
//tmp%2余1相加,余0相减
for(int i = 1;i<list.size();i++){
if(tmp % 2 == 1){
rst += list.get(i);
tmp++;
}else if(tmp % 2 == 0){
rst -= list.get(i);
tmp++;
}
}
return rst;
}
这是别人对该题的解法,地址是:https://blog.csdn.net/be_gin_ner/article/details/88381862
LeetCode竞赛题:笨阶乘(我们设计了一个笨阶乘 clumsy:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。)的更多相关文章
- C++练习 | 在递增序列中查找最后一个小于等于指定数的元素
#include <iostream> using namespace std; int mid,l0; int solve(int a1[],int l,int r,int x) { & ...
- c++ 超长整数乘法 高精度乘法
c++ 超长整数乘法 高精度乘法 解题思路 参考加法和减法解题思路 乘法不是一位一位的按照手算的方式进行计算,而是用循环用一个数的某一位去乘另外一个数 打卡代码 #include<bits/st ...
- 剑指offer编程题Java实现——面试题12相关题大数的加法、减法、乘法问题的实现
用字符串或者数组表示大数是一种很简单有效的表示方式.在打印1到最大的n为数的问题上采用的是使用数组表示大数的方式.在相关题实现任意两个整数的加法.减法.乘法的实现中,采用字符串对大数进行表示,不过在具 ...
- 基于Java的大整数运算的实现(加法,减法,乘法)学习笔记
大整数,顾名思义就是特别大的整数. 一台64位的机器最大能表示的数字是2的64次方减一: 18446744073709551615 java语言中所能表示的整数(int)最小为-2147483648 ...
- POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)
题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...
- 【LeetCode】Design Linked List(设计链表)
这道题是LeetCode里的第707到题.这是在学习链表时碰见的. 题目要求: 设计链表的实现.您可以选择使用单链表或双链表.单链表中的节点应该具有两个属性:val 和 next.val 是当前节点的 ...
- [LeetCode] 622.Design Circular Queue 设计环形队列
Design your implementation of the circular queue. The circular queue is a linear data structure in w ...
- Java程序员从笨鸟到菜鸟之(五十一)细谈Hibernate(二)开发第一个hibernate基本详解
在上篇博客中,我们介绍了<hibernate基本概念和体系结构>,也对hibernate框架有了一个初步的了解,本文我将向大家简单介绍Hibernate的核心API调用库,并讲解一下它的基 ...
- sql注入-推断是否存在SQL注入-加法和减法
这里我们需要区分一下数字型和字符串型: 数字型:不需要使用单引号来表示 其他类型:使用单引号来表示 综合上述,我们可以发现我们的例子是数字型的,这样我们就可以使用加法和减法来判断了. 加法,我们在参数 ...
随机推荐
- js对数组中的数字排序
1 前言 如果数组里面都是数字,如果用原生的sort,默认是按字符串排序的,不符合我们的要求 2 代码 方法1:添加Array的原生方法 Array.prototype.sort2 =function ...
- 业务侧有大量timeout请求超时日志
故障背景:程序日志发现有程序请求数据库有大量的timeout请求故障时间:xxx~xxx 故障排查:排查应用服务器和数据库服务器网络和其它硬件监控没有断点,数据库监控请求数当时时间段几乎为0 故障分析 ...
- python-迭代器、生成器、内置函数及面向过程编程
一.迭代器 迭代器是迭代取值的工具,迭代是一个重复的过程,每一次重复都是基于上一次的结果而来的. 为什么要用迭代器呢? 1.可以不依赖索引取值 2.同一时刻在内存中只有一个值,不会过多的占用内存 如何 ...
- 小程序---textarea踩坑
1.小程序中textarea不能在scroll-view.swiper.picker-view等等里面运用. 2.不在fixed布局的页面中,placeholder也会随着页面滚动,解决方法:顶级父元 ...
- DataGridView中进行增删改查
首先我们需要知道是在哪个数据库中的哪个表进行增删改查: 这就需要我们: 建立给连接服务器的类:(可以在方法类中建立) 建立一个对列名进行封装的类:方便数据之间的传接:(学到Linq-sql时这些就简便 ...
- Confluence 6 WebDAV 禁用严格路径检查
如果你在你的 WebDAV 客户端发现了一些不正常的现象,例如文件夹在 Confluence 中是存在的,但是在你客户端下载的文件中就不存在了.你可以禁用 WebDAV 插件中的严格路径检查选项,这 ...
- selenium+python之 辨识alert、window以及操作
1.分辨 首先区别下alert.window和伪装对话框: alert,浏览器弹出框,一般是用来确认某些操作.输入简单的text或用户名.密码等,根据浏览器的不同,弹出框的样式也不一样,不过都是很简单 ...
- 团队开发工具git常用命令
Git 常用命令 Git配置 git config --global user.name "storm" git config --global user.email " ...
- java 命令行运行时报错:找不到或无法加载主类
源码如下: 路径目录(...\src\object) //: ch1.10/Command.java /**@author feilong * @version 1.0 */ package obje ...
- Practical Web Penettation Testing (the first one Mutillidae 大黄蜂 之二)
1.how to use dpkg cmmand first it can be used for list all software , dpkg -l (由于kali linux 没有启动所以 ...