基本概念和功能:

PyTorch是一个能够提供两种高级功能的python开发包,这两种高级功能分别是:
  使用GPU做加速的矢量计算
  具有自动重放功能的深度神经网络
从细的粒度来分,PyTorch是一个包含如下类别的库:

  1. Torch:类似于Numpy的通用数组库,可以在将张量类型转换为2 (torch.cuda.TensorFloat)并在GPU上进行计算。
  2. torch.autograd 支持全微分张量运算的基于磁带的自动微分库
  3. torch.nn 一个具有最大设计灵活性的高度集成的神经网络库
  4. torch.multiprocessing python的多重处理系统,通常用在数据加载和高强度的训练
  5. torch.utils 数据记载,训练和转换的接口函数
  6. torch.legacy(.nn/.optim) 从Torch上移植过来的代码,为了保证向后兼容.

安装指南:

安装有两种方式,一种是库文件安装详见目录:https://pytorch.org/

另外一种是源码安装:在github上把东西下载下来:https://github.com/pytorch/pytorch.git

下载之首先要进行源码安装,在根目录下执行:

python setup.py install

这个是linux下的源码安装,安装过程中很多情况下会缺少一些库,这个要根据实际的问题去谷歌搜,答案都能找到的.

源码分析:

源码的目录如下所示:

分解:

  • aten: 在torch中实现矢量运算的简单的矢量库.
  • caffe2:caffe2的源码和例子
  • docs: 该系统的文档
  • third_party 第三方的库文件和和源码
  • torch torch的源码和使用例子
  • binaries 各种基准的生成源码

最简实例:

下面一个例子是使用PyTorch做线性回归的例子,源码如下:

 # -*- coding: utf-8 -*-

 import torch
import torch.optim as optim
import matplotlib.pyplot as plt learning_rate = 0.001 def get_fake_data(batch_size=32):
''' y=x*2+3 '''
x = torch.randn(batch_size, 1) * 20
y = x * 2 + 3 + torch.randn(batch_size, 1)
return x, y x, y = get_fake_data() class LinerRegress(torch.nn.Module):
def __init__(self):
super(LinerRegress, self).__init__()
self.fc1 = torch.nn.Linear(1, 1) def forward(self, x):
return self.fc1(x) net = LinerRegress()
loss_func = torch.nn.MSELoss()
optimzer = optim.SGD(net.parameters(), lr=learning_rate) for i in range(40000): optimzer.zero_grad() out = net(x)
loss = loss_func(out, y)
loss.backward() optimzer.step() w, b = [param.item() for param in net.parameters()]
print w, b # 2.01146, 3.184525 # 显示原始点与拟合直线
plt.scatter(x.squeeze().numpy(), y.squeeze().numpy())
plt.plot(x.squeeze().numpy(), (x*w + b).squeeze().numpy())
plt.show()

  运行结果:

  到此为止,PyTorch的基本认识算是结束,后面就要开始深入的分析它在各个方面的应用和代码了.

神经网络架构PYTORCH-宏观分析的更多相关文章

  1. 神经网络架构PYTORCH-几个概念

    使用Pytorch之前,有几个概念需要弄清楚. 什么是Tensors(张量)? 这个概念刚出来的时候,物理科班出身的我都感觉有点愣住了,好久没有接触过物理学的概念了. 这个概念,在物理学中怎么解释呢? ...

  2. 神经网络架构PYTORCH-前馈神经网络

    首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例: 一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了. class N ...

  3. 神经网络架构PYTORCH-初相识(3W)

    who? Python是基于Torch的一种使用Python作为开发语言的开源机器学习库.主要是应用领域是在自然语言的处理和图像的识别上.它主要的开发者是Facebook人工智能研究院(FAIR)团队 ...

  4. 神经网络架构pytorch-MSELoss损失函数

    MSELoss损失函数中文名字就是:均方损失函数,公式如下所示: 这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标. 很多的 loss 函数都有 size_average 和 ...

  5. 怎样设计最优的卷积神经网络架构?| NAS原理剖析

    虽然,深度学习在近几年发展迅速.但是,关于如何才能设计出最优的卷积神经网络架构这个问题仍在处于探索阶段. 其中一大部分原因是因为当前那些取得成功的神经网络的架构设计原理仍然是一个黑盒.虽然我们有着关于 ...

  6. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  7. (转) 干货 | 图解LSTM神经网络架构及其11种变体(附论文)

    干货 | 图解LSTM神经网络架构及其11种变体(附论文) 2016-10-02 机器之心 选自FastML 作者:Zygmunt Z. 机器之心编译  参与:老红.李亚洲 就像雨季后非洲大草原许多野 ...

  8. 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)

    摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...

  9. 经典的卷积神经网络及其Pytorch代码实现

    1.LeNet LeNet是指LeNet-5,它是第一个成功应用于数字识别的卷积神经网络.在MNIST数据集上,可以达到99.2%的准确率.LeNet-5模型总共有7层,包括两个卷积层,两个池化层,两 ...

随机推荐

  1. jQuery基础方法:each(),map(),index(),is()

    jQuery的each()方法和forEach()的区别: each()返回调用自身的jQuery对象,可用于链式调用 $('div').each(function(idx){ //找到所有div元素 ...

  2. 关于Https

    http://blog.csdn.net/wfdtxz/article/details/8678982 https://www.tuicool.com/articles/feYfE3I https:/ ...

  3. 使用struts2框架后的拦截器

    过滤特殊字符的过滤器 struts2会在web.xml中配置如下的过滤器: <filter> <filter-name>struts</filter-name> & ...

  4. django添加控件

    function bindRemoveCls() { $('#removeCls').click(function () { var options = $('#sel')[0].selectedOp ...

  5. X of a Kind in a Deck of Cards LT914

    In a deck of cards, each card has an integer written on it. Return true if and only if you can choos ...

  6. Maven 的这 7 个问题你思考过没有?

    在如今的互联网项目开发当中,特别是Java领域,可以说Maven随处可见.Maven的仓库管理.依赖管理.继承和聚合等特性为项目的构建提供了一整套完善的解决方案,可以说如果你搞不懂Maven,那么一个 ...

  7. selenium中maven的使用

    一.maven的下载.解压以及环境变量配置 1.下载maven: 官网下载地址:http://maven.apache.org/download.cgi 在Files下面下载对应的maven版本(官网 ...

  8. font-size:0的妙用,用于解决inline或者inline-block造成的间隙

    1.图片间的缝隙(图片间的间隙一般是由换行.缩进造成的) <div> <img src="1.jpg"> <img src="2.jpg&q ...

  9. VS2017 Debug断点后显示UTF8字符串

    断点后跟踪字幕文件文本,因为国内字幕一般是UTF8的,VS默认显示不出来,在变量上双击,加入 ,s8就可以了 默认 修改后 其他 ,数字  将变量拆分为数组显示, 数字是要显示多少位, 此法对cons ...

  10. Greenplum 日常维护手册 (汇总、点评、备查)

    1. 数据库启动:gpstart常用可参数: -a : 直接启动,不提示终端用户输入确认-m:只启动master 实例,主要在故障处理时使用2. 数据库停止:gpstop:常用可参数:-a:直接停止, ...