题目描述

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
题解
假设我们已经确定了这k个元素都是谁,最后再乘上C(n,k)就可以了。
根据容斥原理(二项式反演)可知,答案为选出至少k个的方案数-选出至少k+1个的方案数+选出至少k+2个的方案数。。。
如何求选出至少x个的方案数,考虑有多少种集合包含x个元素,答案是2n-x(相当于我们已经确定了x个元素)。
他们中每个集合都可以选或不选,但是不能都不选。
所以是2r-1,r是刚才那个2n-x
最后因为我们固定了k个,有x-k个没有固定,再乘上C(n-k,x-k)
注意指数要%mod-1
代码
#include<iostream>
#include<cstdio>
#define N 1000009
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll inv[N],jie[N],ni[N],n,k,ans;
inline ll power(ll x,ll y){
ll ans=;
while(y){
if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;
}
return ans;
}
inline ll C(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
int main(){
cin>>n>>k;
inv[]=;
for(int i=;i<=n;++i)inv[i]=inv[i-]*%(mod-);
jie[]=;
for(int i=;i<=n;++i)jie[i]=jie[i-]*i%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
for(int i=k;i<=n;++i){
if((i-k)&)ans-=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
else ans+=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
ans=(ans%mod+mod)%mod;
}
ans=ans*C(n,k)%mod;
cout<<ans;
return ;
}

BZOJ2839集合计数的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  3. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  4. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  5. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  6. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  7. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  8. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. [转帖]linux下的X server:linux图形界面原理

    linux下的X server:linux图形界面原理 https://www.cnblogs.com/liangxiaofeng/p/5034912.html linux下的X server:lin ...

  2. cmake : undefined reference to dlopen, dlclose, dlsym and dlerror

    链接出了问题 添加头文件 #include <dlfcn.h> 添加库 target_link_libraries(PROJECT_NAME ${CMAKE_DL_LIBS})

  3. javap -v没有显示LocalVaribleTable

    时隔多日,终于找到为什么javap -v .class文件没有LocalVariableTable出现 因为默认的javac编译没有生成相关的调试信息,这里我们可以通过javac -help查看指令帮 ...

  4. VS code常用快捷方式—转载

    http://www.cnblogs.com/weihe-xunwu/p/6687000.html

  5. Hadoop2.0 Namenode HA实现方案

    Hadoop2.0 Namenode HA实现方案介绍及汇总 基于社区最新release的Hadoop2.2.0版本,调研了hadoop HA方面的内容.hadoop2.0主要的新特性(Hadoop2 ...

  6. Redis五大数据类型

    首先说明下,Redis是:单线程+多路IO复用技术!!! string set  >  key  +  zset          list hash 常用的几个命令: >keys * 查 ...

  7. SCP传送文件时提示No ECDSA host key is known forx.x.x.x and you have requested strict checking.问题的解决办法

    在使用SCP向其他设备传送文件时,打印如下错误: No ECDSA host key is known for x.x.x.x and you have requested strict checki ...

  8. Chromecast

    Chromecast chrome://cast/#offers https://chromecast.com/help https://www.pcmag.com/feature/326584/24 ...

  9. Postman & API

    Postman & API https://www.getpostman.com/ https://www.getpostman.com/downloads/ Postman Canary h ...

  10. Echarts使用Ajax异步获得数据的前端json格式转化问题

    利用Ajax获取后台传来的data,官网都有example 但如果后台传来的数据是String格式的,则应该在Ajax的done方法中第一句加上格式转换的语句 data = JSON.parse(da ...