BZOJ2839集合计数
题目描述
#include<iostream>
#include<cstdio>
#define N 1000009
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll inv[N],jie[N],ni[N],n,k,ans;
inline ll power(ll x,ll y){
ll ans=;
while(y){
if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;
}
return ans;
}
inline ll C(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
int main(){
cin>>n>>k;
inv[]=;
for(int i=;i<=n;++i)inv[i]=inv[i-]*%(mod-);
jie[]=;
for(int i=;i<=n;++i)jie[i]=jie[i-]*i%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
for(int i=k;i<=n;++i){
if((i-k)&)ans-=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
else ans+=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
ans=(ans%mod+mod)%mod;
}
ans=ans*C(n,k)%mod;
cout<<ans;
return ;
}
BZOJ2839集合计数的更多相关文章
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
随机推荐
- java的数据类型:基本数据类型和引用数据类型
Java数据类型的基本概念 数据类型在计算机语言里面,是对内存位置的一个抽象表达方式,可以理解为针对内存的一种抽象的表达方式. 开始接触每种语言的时候,都会存在对数据类型的认识,有复杂的,有复杂的,各 ...
- 【转帖】理解 Linux 的虚拟内存
理解 Linux 的虚拟内存 https://www.cnblogs.com/zhenbianshu/p/10300769.html 段页式内存 文章了里面讲了 页表 没讲段表 记得最开始的时候 学习 ...
- [转帖]pfSense软路由系统的使用
图解pfSense软路由系统的使用(NAT功能) http://seanlook.com/2015/04/23/pfsense-usage/ 发表于 2015-04-23 | 更新于: 2015- ...
- for循环游标
- 缓存session,cookie,sessionStorage,localStorage的区别
https://www.cnblogs.com/cencenyue/p/7604651.html(copy) 浅谈session,cookie,sessionStorage,localStorage的 ...
- select2 简单解析
<select name="supplierId" class="customsBrokerSel select2 absOpacity select2-hidde ...
- python学习笔记(8)--random库的使用
伪随机数:采用梅森旋转算法生成的伪随机序列中元素 使用random库 一.基本随机函数 随机数需要一个种子,依据这个种子通过梅森旋转算法产生固定序列的随机数.seed(a=None) 初始化给定的随 ...
- Lodop打印如何隐藏table某一列
Lodop打印超文本,既可以打印页面上存在的某些部分,也可以自己组织超文本和css样式传入,有些需要打印的页面表格里,会有一列有编辑删除等按钮,用于对于数据库数据的操作,在打印的时候,这一列由于不属于 ...
- vue axios 封装(二)
封装二: http.js import axios from 'axios' import storeHelper from './localstorageHelper' // 全局设置 const ...
- Windows & RabbitMQ:Shovel
RabbitMQ的集群和高可用不适合跨域的情况,如果跨域可以使用Shovel或Federation. 描述:我们需要配置三台服务器:ServerA, ServerB, ServerC Step 1:安 ...