题目描述

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
题解
假设我们已经确定了这k个元素都是谁,最后再乘上C(n,k)就可以了。
根据容斥原理(二项式反演)可知,答案为选出至少k个的方案数-选出至少k+1个的方案数+选出至少k+2个的方案数。。。
如何求选出至少x个的方案数,考虑有多少种集合包含x个元素,答案是2n-x(相当于我们已经确定了x个元素)。
他们中每个集合都可以选或不选,但是不能都不选。
所以是2r-1,r是刚才那个2n-x
最后因为我们固定了k个,有x-k个没有固定,再乘上C(n-k,x-k)
注意指数要%mod-1
代码
#include<iostream>
#include<cstdio>
#define N 1000009
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll inv[N],jie[N],ni[N],n,k,ans;
inline ll power(ll x,ll y){
ll ans=;
while(y){
if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;
}
return ans;
}
inline ll C(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
int main(){
cin>>n>>k;
inv[]=;
for(int i=;i<=n;++i)inv[i]=inv[i-]*%(mod-);
jie[]=;
for(int i=;i<=n;++i)jie[i]=jie[i-]*i%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
for(int i=k;i<=n;++i){
if((i-k)&)ans-=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
else ans+=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
ans=(ans%mod+mod)%mod;
}
ans=ans*C(n,k)%mod;
cout<<ans;
return ;
}

BZOJ2839集合计数的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  3. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  4. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  5. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  6. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  7. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  8. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. Hive基础

    一.常用语句 二.嵌套语句 以上两句的查询结果相同. 三.关键字查询

  2. myeclipse部署报错报空指针异常

    hib4.1+spring3+struts2项目 项目运行报错,把WEB-INF/classes目录删除后,想再重新编译并自动部署.再自动部署时总是提示错误: Errors occurred duri ...

  3. react 路由4 学习

    表单控件 受控表单组件 非受控的表单组件 demo:收集表单提交的数据 路由(V4) 特点:一切皆是组件 官网:https://reacttraining.com/react-router/ npm ...

  4. [转帖]Linux分页机制之分页机制的演变--Linux内存管理(七)

    Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatiem ...

  5. 校园电商项目2(基于SSM)——模块设计

    步骤一:各模块职责 步骤二:实体类设计 package com.figsprite.o2o.bean; import java.util.Date; public class Area { priva ...

  6. CDH 6.0.1 集群搭建 「Process」

    这次搭建我使用的机器 os 是 Centos7.4 RH 系的下面以流的方式纪录搭建过程以及注意事项 Step1: 配置域名相关,因为只有三台机器组集群,所以直接使用了 hosts 的方法: 修改主机 ...

  7. Spring拦截器(学习笔记)

    SpringMVC 中的Interceptor 拦截请求是通过HandlerInterceptor 来实现的 在SpringMVC 中定义一个Interceptor 非常简单,主要有两种方式 第一种方 ...

  8. Postman & API

    Postman & API https://www.getpostman.com/ https://www.getpostman.com/downloads/ Postman Canary h ...

  9. mysql 数据库的主从同步

    1.复制准备 操作系统 centOS 主库(mysql master):  ip为123.56.94.1   port为3306  mysql 版本 5.7.16 从库(mysql slave):   ...

  10. QTP键盘操作笔记

    micCtrlDwn  Presses the Ctrl key. micCtrlUp  Releases the Ctrl key. micLCtrlDwn  Presses the left Ct ...