题目描述

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
题解
假设我们已经确定了这k个元素都是谁,最后再乘上C(n,k)就可以了。
根据容斥原理(二项式反演)可知,答案为选出至少k个的方案数-选出至少k+1个的方案数+选出至少k+2个的方案数。。。
如何求选出至少x个的方案数,考虑有多少种集合包含x个元素,答案是2n-x(相当于我们已经确定了x个元素)。
他们中每个集合都可以选或不选,但是不能都不选。
所以是2r-1,r是刚才那个2n-x
最后因为我们固定了k个,有x-k个没有固定,再乘上C(n-k,x-k)
注意指数要%mod-1
代码
#include<iostream>
#include<cstdio>
#define N 1000009
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll inv[N],jie[N],ni[N],n,k,ans;
inline ll power(ll x,ll y){
ll ans=;
while(y){
if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;
}
return ans;
}
inline ll C(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
int main(){
cin>>n>>k;
inv[]=;
for(int i=;i<=n;++i)inv[i]=inv[i-]*%(mod-);
jie[]=;
for(int i=;i<=n;++i)jie[i]=jie[i-]*i%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
for(int i=k;i<=n;++i){
if((i-k)&)ans-=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
else ans+=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
ans=(ans%mod+mod)%mod;
}
ans=ans*C(n,k)%mod;
cout<<ans;
return ;
}

BZOJ2839集合计数的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  3. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  4. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  5. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  6. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  7. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  8. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. java的数据类型:基本数据类型和引用数据类型

    Java数据类型的基本概念 数据类型在计算机语言里面,是对内存位置的一个抽象表达方式,可以理解为针对内存的一种抽象的表达方式. 开始接触每种语言的时候,都会存在对数据类型的认识,有复杂的,有复杂的,各 ...

  2. 【转帖】理解 Linux 的虚拟内存

    理解 Linux 的虚拟内存 https://www.cnblogs.com/zhenbianshu/p/10300769.html 段页式内存 文章了里面讲了 页表 没讲段表 记得最开始的时候 学习 ...

  3. [转帖]pfSense软路由系统的使用

    图解pfSense软路由系统的使用(NAT功能) http://seanlook.com/2015/04/23/pfsense-usage/  发表于 2015-04-23 |  更新于: 2015- ...

  4. for循环游标

  5. 缓存session,cookie,sessionStorage,localStorage的区别

    https://www.cnblogs.com/cencenyue/p/7604651.html(copy) 浅谈session,cookie,sessionStorage,localStorage的 ...

  6. select2 简单解析

    <select name="supplierId" class="customsBrokerSel select2 absOpacity select2-hidde ...

  7. python学习笔记(8)--random库的使用

    伪随机数:采用梅森旋转算法生成的伪随机序列中元素 使用random库 一.基本随机函数 随机数需要一个种子,依据这个种子通过梅森旋转算法产生固定序列的随机数.seed(a=None)  初始化给定的随 ...

  8. Lodop打印如何隐藏table某一列

    Lodop打印超文本,既可以打印页面上存在的某些部分,也可以自己组织超文本和css样式传入,有些需要打印的页面表格里,会有一列有编辑删除等按钮,用于对于数据库数据的操作,在打印的时候,这一列由于不属于 ...

  9. vue axios 封装(二)

    封装二: http.js import axios from 'axios' import storeHelper from './localstorageHelper' // 全局设置 const ...

  10. Windows & RabbitMQ:Shovel

    RabbitMQ的集群和高可用不适合跨域的情况,如果跨域可以使用Shovel或Federation. 描述:我们需要配置三台服务器:ServerA, ServerB, ServerC Step 1:安 ...