题目描述

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
题解
假设我们已经确定了这k个元素都是谁,最后再乘上C(n,k)就可以了。
根据容斥原理(二项式反演)可知,答案为选出至少k个的方案数-选出至少k+1个的方案数+选出至少k+2个的方案数。。。
如何求选出至少x个的方案数,考虑有多少种集合包含x个元素,答案是2n-x(相当于我们已经确定了x个元素)。
他们中每个集合都可以选或不选,但是不能都不选。
所以是2r-1,r是刚才那个2n-x
最后因为我们固定了k个,有x-k个没有固定,再乘上C(n-k,x-k)
注意指数要%mod-1
代码
#include<iostream>
#include<cstdio>
#define N 1000009
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll inv[N],jie[N],ni[N],n,k,ans;
inline ll power(ll x,ll y){
ll ans=;
while(y){
if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;
}
return ans;
}
inline ll C(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
int main(){
cin>>n>>k;
inv[]=;
for(int i=;i<=n;++i)inv[i]=inv[i-]*%(mod-);
jie[]=;
for(int i=;i<=n;++i)jie[i]=jie[i-]*i%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
for(int i=k;i<=n;++i){
if((i-k)&)ans-=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
else ans+=C(n-k,i-k)*(power(,inv[n-i])-)%mod;
ans=(ans%mod+mod)%mod;
}
ans=ans*C(n,k)%mod;
cout<<ans;
return ;
}

BZOJ2839集合计数的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  3. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  4. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  5. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  6. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  7. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  8. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. 【学习总结】GirlsInAI ML-diary day-5-布尔表达式/Bool

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day5 认识布尔表达式 简单来说,bool 就是对错判断. 给个条件,如果满足条件就返回True, 不满足条件就返回Fal ...

  2. #Leetcode# 989. Add to Array-Form of Integer

    https://leetcode.com/problems/add-to-array-form-of-integer/ For a non-negative integer X, the array- ...

  3. jmeter接口测试------基础笔记

    1.postman发送json格式的post请求,直接放链接 row里面body放请求参数,得到请求结果 2.jmeter请求json时需要注意在请求前创建http信息头管理器,然后信息头添加一条名称 ...

  4. jdk环境变量配置注意事项

    cmd 运行java -version 显示错误 Registry key 'Software\JavaSoft\Java Runtime Environment\CurrentVersion'has ...

  5. Oracle 不小心删除undo数据文件以及磁盘空间不足导致不能登录的解决办法

    在一次测试中,由于导入的数据量过大导致事务一直提交失败因为磁盘空间不够用了,一检查发现是undo表空间不够用,于是重新创建了一个表空间,准备把之前的undo表空间删除,删除时却发现一直删不掉,因为它一 ...

  6. 小程序和H5互调

    小程序跳H5页面 https://blog.csdn.net/mytljp/article/details/81030687(copy) H5页面跳小程序 https://blog.csdn.net/ ...

  7. C# Note18: 使用wpf制作about dialog(关于对话框)

    前言 基本上任何software或application都会在help菜单中,有着一个关于对话框,介绍产品的版权.版本等信息,还有就是对第三方的引用(add author credits). 首先,看 ...

  8. 【转】MySQL sql_mode 说明(及处理一起 sql_mode 引发的问题)

    1. MySQL 莫名变成了 Strict SQL Mode 最近测试组那边反应数据库部分写入失败,app层提示是插入成功,但表里面里面没有产生数据,而两个写入操作的另外一个表有数据.因为 inser ...

  9. SSH整合Maven教程

    http://www.cnblogs.com/xdp-gacl/p/4239501.html

  10. 当考虑到并发问题时候,我们需要将给表插入id的代码挪到service中,目的是将其放到一个事务中,保准事务的一致性