hdu1695(莫比乌斯反演)
传送门:GCD
题意:求[1,n],[1,m]gcd为k的对数。
分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1,2][2,1]之类重复的个数即答案。
莫比乌斯反演资料: 贾志鹏线性筛
莫比乌斯反演:46ms
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline int read()
{
char ch=getchar();int x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool vis[N+];
int mu[N+],prime[N+];
void Moblus()
{
memset(vis,false,sizeof(vis));
mu[]=;
int tot=;
for(int i=;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>N)break;
vis[i*prime[j]]=true;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else
{
mu[i*prime[j]]=-mu[i];
}
}
}
}
int main()
{
int T,a,b,c,d,k,cas=;
Moblus();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",cas++);
if(k==)
{
puts("");
continue;
}
b=b/k;d=d/k;
if(b>d)swap(b,d);
LL ans=,res=;
for(int i=;i<=b;i++)
ans+=1LL*mu[i]*(b/i)*(d/i);
for(int i=;i<=b;i++)
res+=1LL*mu[i]*(b/i)*(b/i);
printf("%I64d\n",ans-res/);
}
}
欧拉+容斥:484ms
#include <algorithm>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <queue>
#include <deque>
#include <stack>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int N=;
LL euler[N];
int num[N],prime[N][];
void EulerPrime()
{
euler[]=;
for(int i=;i<N;i++)
{
if(!euler[i])
{
for(int j=i;j<N;j+=i)
{
if(!euler[j])euler[j]=j;
euler[j]=euler[j]*(i-)/i;
prime[j][num[j]++]=i;
}
}
euler[i]+=euler[i-];
}
//for(int i=1;i<=20;i++)printf("%d ",num[i]);
}
int sum;
int gcd(int a,int b)
{
return a%b==?b:gcd(b,a%b);
}
int lcm(int a,int b)
{
return a/gcd(a,b)*b;
}
void dfs(int i,int lm,int flag,int n,int m)
{
if(i==num[n])return;
int x=lcm(prime[n][i],lm);
sum+=m/x*flag;
for(int j=i;j<num[n];j++)
dfs(j+,x,-flag,n,m);
}
int solve(int m,int n)
{
sum=;
for(int i=;i<num[n];i++)
{
dfs(i,,,n,m);
}
return sum;
}
int main()
{
int cas=,T;
int a,b,c,d,k;
EulerPrime();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==)
{
printf("Case %d: ",cas++);
puts("");continue;
}
if(b>d)swap(b,d);
b/=k;d/=k;LL ans=euler[b];
for(int i=b+;i<=d;i++)
ans+=b-solve(b,i);
printf("Case %d: %I64d\n",cas++,ans);
}
}
hdu1695(莫比乌斯反演)的更多相关文章
- hdu1695 莫比乌斯反演
莫比乌斯反演:可参考论文:<POI XIV Stage.1 <Queries>解题报告By Kwc-Oliver> 求莫比乌斯函数mu[i]:(kuangbin模板) http ...
- HDU-1695 莫比乌斯反演
这里学习一下莫比乌斯反演 翻看了很多书,发现莫比乌斯反演,准确来说不是一种固有的公式,而是一种法则. 我们定义F(n),为f(d)的和函数,而定义f(n)为某儿算术函数. 反演公式1:反演n的因子时 ...
- hdu1695(莫比乌斯反演模板)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b], y 属于 [c, ...
- hdu1695(莫比乌斯反演+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...
- hdu1695莫比乌斯反演模板题
hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...
- 【HDU1695】GCD(莫比乌斯反演)
[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...
- hdu1695(容斥 or 莫比乌斯反演)
刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
随机推荐
- javascript 浏览器兼容性写法
var event = window.event || arguments.callee.caller.arguments[0]; // 获取event对象 event = event.srcElem ...
- 如何删除JAVA集合中的元素
经常我们要删除集合中的某些元素.有些可能会这么写. public void operate(List list){ for (Iterator it = list.iterator(); it.has ...
- <转载>Div+Css布局教程(-)CSS必备知识
目录: 1.Div+Css布局教程(-)CSS必备知识 注:本教程要求对html和css有基础了解. 一.CSS布局属性 Width:设置对象的宽度(width:45px). Height:设置对象的 ...
- linux命令:scp
有时候ftp被禁用了, 就用scp替代; 命令行: scp from to_user@to_ip:dir_to/file_name 执行该命令之后,按照提示输入to_host的登陆密码即可. scp ...
- web攻击方式和防御方法
在http请求报文中载入攻击代码,就能发起对web应用的攻击.通过url查询字段或者表单.http首部.cookie等途径吧攻击代码传入,若这时web应用存在安全漏洞,那内部信息就会遭到窃取! 对we ...
- 使用hadoop ecipse插件须要注意的问题
1.关于run on hadoop的问题: 在未用hadoop eclipse插件前,我以为通过hadoop eclipse 插件不但能够管理hdfs,还能够自己主动打包程序.并帮我自己主动设置Con ...
- 重操JS旧业第一弹:Script与JS加载
不管js被包装成什么样子,最终交给浏览器执行的js都是原生的,都离不开原生js的原理. Script标签纸html中用来加载js的标签,我们知道js可以是来自外部,本地,或者内部一段代码,在这里只讨论 ...
- Qt Style Sheets Examples(QT真是有很全的文档)
http://doc.qt.io/qt-5/stylesheet-examples.html http://doc.qt.io/qt-4.8/stylesheet.html
- delphi中无类型文件读写
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...
- 14.1.2 Checking InnoDB Availability 检查InnoDB 可用性:
14.1.2 Checking InnoDB Availability 检查InnoDB 可用性: 确认你的server 是否支持InnoDB,使用 SHOW ENGINES 语句.(默认MySQL的 ...