Transformation和action详解

视频教程:

1、优酷

2、YouTube

什么是算子

算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作。

算子分类:

具体:

1、Value数据类型的Transformation算子,这种变换并不触发提交作业,针对处理的数据项是Value型的数据。

2、Key-Value数据类型的Transfromation算子,这种变换并不触发提交作业,针对处理的数据项是Key-Value型的数据对。

3、Action算子,这类算子会触发SparkContext提交Job作业。

RDD有两种操作算子:

1、Transformation(转换)

2、Ation(执行)

作用

1、transformation是得到一个新的RDD,方式很多,比如从数据源生成一个新的RDD,从RDD生成一个新的RDD,Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住了数据集的逻辑操作。

2、action是得到一个值,或者一个结果(直接将RDDcache到内存中),触发Spark作业的运行,真正触发转换算子的计算。

所有的transformation都是采用的懒策略,如果只是将transformation提交是不会执行计算的,计算只有在action被提交的时候才被触发。

下图描述了Spark在运行转换中通过算子对RDD进行转换:

输入:在Spark程序运行中,数据从外部数据空间(如分布式存储:textFile读取HDFS等,parallelize方法输入Scala集合或数据)输入Spark,数据进入Spark运行时数据空间,转化为Spark中的数据块,通过BlockManager进行管理。

运行:在Spark数据输入形成RDD后便可以通过变换算子,如filter等,对数据进行操作并将RDD转化为新的RDD,通过Action算子,触发Spark提交作业。 如果数据需要复用,可以通过Cache算子,将数据缓存到内存。

输出:程序运行结束数据会输出Spark运行时空间,存储到分布式存储中(如saveAsTextFile输出到HDFS),或Scala数据或集合中(collect输出到Scala集合,count返回Scala int型数据)。

Transformation和Actions操作概况

Transformation具体内容

1、map(func) :返回一个新的分布式数据集,由每个原元素经过func函数转换后组成。

2、filter(func) : 返回一个新的数据集,由经过func函数后返回值为true的原元素组成 。

3、flatMap(func) : 类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)。

4、sample(withReplacement, frac, seed) : 根据给定的随机种子seed,随机抽样出数量为frac的数据。

5、union(otherDataset) : 返回一个新的数据集,由原数据集和参数联合而成。

6、groupByKey([numTasks]) : 在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task。

7、reduceByKey(func, [numTasks]) : 在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。

8、join(otherDataset, [numTasks]) : 在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集。

9、groupWith(otherDataset, [numTasks]) : 在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq[V], Seq[W]) Tuples。

10、cartesian(otherDataset) : 笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。

Actions具体内容

1、reduce(func) : 通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行。

2、collect() : 在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM。

3、count() : 返回数据集的元素个数。

4、take(n) : 返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素内存压力会增大,需要谨慎使用。

5、first() : 返回数据集的第一个元素(类似于take(1))。

6、saveAsTextFile(path) : 将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本。

7、saveAsSequenceFile(path) : 将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等)。

8、foreach(func) : 在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互。

(七)Transformation和action详解-Java&Python版Spark的更多相关文章

  1. (八)map,filter,flatMap算子-Java&Python版Spark

    map,filter,flatMap算子 视频教程: 1.优酷 2.YouTube 1.map map是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的J ...

  2. sparkStreaming的transformation和action详解

    根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...

  3. (一)Spark简介-Java&Python版Spark

    Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...

  4. (四)Spark集群搭建-Java&Python版Spark

    Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到m ...

  5. (二)Spark-Linux环境准备-Java&Python版Spark

    Spark-Linux环境准备 视频教程: 1.优酷 2.YouTube 硬软件环境 1.虚拟机:VMware Workstation 12 2.虚拟机操作系统:RedHat5u4,单核,1G内存,2 ...

  6. (九)groupByKey,reduceByKey,sortByKey算子-Java&Python版Spark

    groupByKey,reduceByKey,sortByKey算子 视频教程: 1.优酷 2. YouTube 1.groupByKey groupByKey是对每个key进行合并操作,但只生成一个 ...

  7. (三)Spark-Hadoop集群搭建-Java&Python版Spark

    Spark-Hadoop集群搭建 视频教程: 1.优酷 2.YouTube 配置java 启动ftp [root@master ~]# /etc/init.d/vsftpd restart 关闭 vs ...

  8. “全栈2019”Java第七十章:静态内部类详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. Protocol Buffer技术详解(Java实例)

    Protocol Buffer技术详解(Java实例) 该篇Blog和上一篇(C++实例)基本相同,只是面向于我们团队中的Java工程师,毕竟我们项目的前端部分是基于Android开发的,而且我们研发 ...

随机推荐

  1. ABP框架 - 验证数据传输对象

    文档目录 本节内容: 简介 使用数据注解 自定义验证 禁用验证 正常化 简介 一个应用的输入应当先要验证,这个输入可能来自用户或另一个应用,在一个web应用里,验证通常实现两次:在客户端和在服务端,客 ...

  2. LeetCode-1TwoSum(C#)

    # 题目 1. Two Sum Given an array of integers, return indices of the two numbers such that they add up ...

  3. IIS7禁用单个静态文件的缓存配置方法

    IIS7中,想将一个经常修改的静态文件设置为不可缓存,在IIS配置界面里怎么也找不到... 一番google之后在stackoverflow里边发现了这样一段回答,最终解决了问题: just stum ...

  4. 初步认识Node 之Node为何物

    很多人即便是在使用了Node之后也不知道它到底是什么,阅读完本文你应该会有一个初步的.具体的概念了.    Node的目标 提供一种简单的构建可伸缩网络程序的方法.那么,什么是可伸缩网络程序呢?可伸缩 ...

  5. YYModel 源码解读(二)之NSObject+YYModel.h (1)

    本篇文章主要介绍 _YYModelPropertyMeta 前边的内容 首先先解释一下前边的辅助函数和枚举变量,在写一个功能的时候,这些辅助的东西可能不是一开始就能想出来的,应该是在后续的编码过程中 ...

  6. 谈谈iOS Animation

    零.前言 这里没有太多的代码细节,只是探索iOS动画的基本概念,以及其抽象模型,数学基础等.我们学习一个知识的时候一般有两个部分,抽象部分和形象部分,抽象好比语言的语法,是规则,形象好比具体的句子,可 ...

  7. 灵活可扩展的工作流管理平台Airflow

    1. 引言 Airflow是Airbnb开源的一个用Python写就的工作流管理平台(workflow management platform).在前一篇文章中,介绍了如何用Crontab管理数据流, ...

  8. 生成随机id对比

    生成随机id 最近公司的项目游戏生成的随机不重复id,重复概率有点大, 代码如下: private static int id = 0; public static int serverID = 0; ...

  9. MyCat源码分析系列之——结果合并

    更多MyCat源码分析,请戳MyCat源码分析系列 结果合并 在SQL下发流程和前后端验证流程中介绍过,通过用户验证的后端连接绑定的NIOHandler是MySQLConnectionHandler实 ...

  10. Asp.Net Core 项目实战之权限管理系统(0) 无中生有

    0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...