Polycarp's problems
2 seconds
256 megabytes
standard input
standard output
Polycarp is an experienced participant in Codehorses programming contests. Now he wants to become a problemsetter.
He sent to the coordinator a set of n problems. Each problem has it's quality, the quality of the i-th problem is ai (ai can be positive, negative or equal to zero). The problems are ordered by expected difficulty, but the difficulty is not related to the quality in any way. The easiest problem has index 1, the hardest problem has index n.
The coordinator's mood is equal to q now. After reading a problem, the mood changes by it's quality. It means that after the coordinator reads a problem with quality b, the value b is added to his mood. The coordinator always reads problems one by one from the easiest to the hardest, it's impossible to change the order of the problems.
If after reading some problem the coordinator's mood becomes negative, he immediately stops reading and rejects the problemset.
Polycarp wants to remove the minimum number of problems from his problemset to make the coordinator's mood non-negative at any moment of time. Polycarp is not sure about the current coordinator's mood, but he has m guesses "the current coordinator's moodq = bi".
For each of m guesses, find the minimum number of problems Polycarp needs to remove so that the coordinator's mood will always be greater or equal to 0 while he reads problems from the easiest of the remaining problems to the hardest.
The first line of input contains two integers n and m (1 ≤ n ≤ 750, 1 ≤ m ≤ 200 000) — the number of problems in the problemset and the number of guesses about the current coordinator's mood.
The second line of input contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the qualities of the problems in order of increasing difficulty.
The third line of input contains m integers b1, b2, ..., bm (0 ≤ bi ≤ 1015) — the guesses of the current coordinator's mood q.
Print m lines, in i-th line print single integer — the answer to the problem with q = bi.
6 3
8 -5 -4 1 -7 4
0 7 3
2
0
1
分析:dp,考虑从后往前转移;
dp[i][j]表示从后往前i个数去掉了j个数时所需的最小初始b值;
dp1[i]表示若去掉i个数,则所需最小的初始b值;
转移方程为:
dp[i][j]=min(dp[i][j],max(0LL,dp[i-1][j]-a[i]));//当前数保留;
dp[i][j+1]=min(dp[i][j+1],dp[i-1][j]);//当前数删除;
最后二分处理询问;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3fLL
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<ll,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
const int maxn=1e3+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,a[maxn],ans;
ll dp[maxn][maxn],dp1[maxn];
int main()
{
int i,j;
scanf("%d%d",&n,&m);
rep(i,,n)scanf("%d",&a[i]);
memset(dp,llinf,sizeof dp);
dp[][]=0LL;
for(i=n;i>=;i--)
{
for(j=;j<n-i+;j++)
{
dp[n-i+][j]=min(dp[n-i+][j],max(0LL,dp[n-i][j]-a[i]));
dp[n-i+][j+]=min(dp[n-i+][j+],dp[n-i][j]);
}
}
dp1[n]=;
for(i=n-;i>=;i--)dp1[i]=max(dp1[i+],dp[n][i]);
rep(i,,m)
{
ll op;
scanf("%lld",&op);
ans=lower_bound(dp1,dp1+n+,op,greater<ll>())-dp1;
printf("%d\n",ans);
}
//system("Pause");
return ;
}
Polycarp's problems的更多相关文章
- codeforces 727F. Polycarp's problems
题目链接:http://codeforces.com/contest/727/problem/F 题目大意:有n个问题,每个问题有一个价值ai,一开始的心情值为q,每当读到一个问题时,心情值将会加上该 ...
- Codeforces 727 F. Polycarp's problems
Description 有一个长度为 \(n\) 有正负权值的序列,你一开始有一个值,每次到一个权值就加上,最少需要删掉多少数值才能到序列末尾.\(n \leqslant 750,m \leqslan ...
- CF727F [Polycarp's problems] & [EX_Polycarp's problems]
原题题意 给出长度为n的有序数组,m次询问,每次给出一个正整数x.你要删除数组中最少的元素,使得数组中的前缀和+x都为非负整数.允许离线,n≤750,m≤200,000. 原题思路 首先注意到,x能成 ...
- CF 1006B Polycarp's Practice【贪心】
Polycarp is practicing his problem solving skill. He has a list of n problems with difficulties a1,a ...
- Unity性能优化(2)-官方教程Diagnosing performance problems using the Profiler window翻译
本文是Unity官方教程,性能优化系列的第二篇<Diagnosing performance problems using the Profiler window>的简单翻译. 相关文章: ...
- MS SQL错误:SQL Server failed with error code 0xc0000000 to spawn a thread to process a new login or connection. Check the SQL Server error log and the Windows event logs for information about possible related problems
早晨宁波那边的IT人员打电话告知数据库无法访问了.其实我在早晨也发现Ignite监控下的宁波的数据库服务器出现了异常,但是当时正在检查查看其它服务器发过来的各类邮件,还没等到我去确认具体情 ...
- Problems about trees
Problems (1) 给一棵带边权的树,求遍历这棵树(每个节点至少经过一次)再回到起点的最短路程. 答案是显然的:边权之和的两倍. (2)给一棵带边权的树,求遍历这棵树(每个节点至少经过一次)的最 ...
- cf723c Polycarp at the Radio
Polycarp is a music editor at the radio station. He received a playlist for tomorrow, that can be re ...
- Problems with MMM for mysql(译文)
Problems with mmm for mysql posted in MySQL by shlomi 原文:http://code.openark.org/blog/mysql/problems ...
随机推荐
- 《高性能Javascript》读书笔记-4
第四章 算法和流程控制 代码组织结构和解决具体问题的思路是影响代码性能的主要因素 循环处理是最常见的编程模式之一,也是提高性能的关注点之一 循环分四种:标准for循环 ; i < Things. ...
- 浙大pat 1031题解
1031. Hello World for U (20) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Giv ...
- Struts国际化
第一步需要建立配置文件 格式为 文件名_zh_CN.properties 为中文配置文件 文件名_en_US.properties为美式英语配置文件 配置文件里面的值以键值对的形式 ...
- brctl 的使用
brctl 作用: 用来进行以太网桥接(bridge)的管理 主要用法如下: root@hbg:/# brctl --helpBusyBox v1.22.1 (2016-02-24 11:41:04 ...
- 理解 Storm 拓扑的并行度(parallelism)概念
组成:一个运行中的拓扑是由什么构成的:工作进程(worker processes),执行器(executors)和任务(tasks)! 在一个 Storm 集群中,Storm 主要通过以下三个部件来运 ...
- TortoiseGit - pull 与 fetch
Git的Pull其实是fetch与Merge两个命令的合并. 平时遇到的问题是,在本地分支进行了一些修改,准备提交.但是怕提交前有其他人push了新的代码.于是想在提交前,看看远程仓库上的log.这时 ...
- spring容器启动的加载过程(三)
第十步: public class XmlBeanDefinitionReader extends AbstractBeanDefinitionReader { /** * Load bean def ...
- SSL+socket详解
转自:http://hengstart.iteye.com/blog/842529 一. SSL概述 SSL协议采用数字证书及数字签名进行双端实体认证,用非对称加密算法进行密钥协商,用对 ...
- ejabberd组成模块
转自:http://blog.sina.com.cn/u/1776260990 mod_adhoc 特定命令 (XEP-0050) mod_announce 管理公告推荐 mod_adhoc mod_ ...
- redis数据类型:Strings
String是最简单的数据类型,一个key对应一个value,string类型是二进制安全的,redis的String可以包含任何数据, 比如jpg图片或者系列化的对象. Set方法: 设置key对应 ...