Carmichael Numbers - PC110702
欢迎访问我的新博客:http://www.milkcu.com/blog/
原文地址:http://www.milkcu.com/blog/archives/uva10006.html
原创:Carmichael Numbers - PC110702
作者:MilkCu
题目描述
| Carmichael Numbers | 
An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography.
  Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. Some of the cryptographic algorithms he is implementing make use of big prime numbers. However, checking if a big number is prime is not so easy. An exhaustive
 approach can require the division of the number by all the prime numbers smaller or equal than its square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.
However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.
Let a be a random number between 2 and n - 1 (being n the number whose primality we are testing). Then, n is probably prime if the following equation holds:

If a number passes the Fermat test several times then it is prime with a high probability.
Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.
In this problem you are asked to write a program to test if a given number is a Carmichael number. Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella.
 As a side note, we need to mention that, according to Alvaro, the main advantage of encrypted paella over conventional paella is that nobody but you knows what you are eating.
Input
The input will consist of a series of lines, each containing a small positive number n ( 2
 < n < 65000). A number n = 0 will
 mark the end of the input, and must not be processed.
Output
For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.
Sample Input
1729
17
561
1109
431
0
Sample Output
The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.
Miguel Revilla
2000-08-21
解题思路
Carmichael数肯定是个合数,且对于所有a都满足a^n mod n = a。
根据题目,按部就班的做。 
在对乘方求模的时候可以使用递归的方法,减少计算时间:
(a mod n) ^ p mod n = ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p % 2) mod n) mod n
注意不要超过整型范围,增加取模次数,使用long long类型。 
不超过100000的16个卡迈克数如下:
561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,62745,63973,75361。
代码实现
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int isPri(int n) {
for(int i = 2; i <= sqrt(n); i++) {
if(n % i == 0) {
return 0;
}
}
return 1;
}
long long powmod(int a, int p, int n) {
if(p == 1) {
return a % n;
}
if(p == 0) {
return 1 % n;
}
return (powmod(a, p / 2, n) % n) * (powmod(a, p / 2, n) % n) * (powmod(a, p % 2, n) % n) % n;
}
int isCar(int n) {
if(isPri(n)) {
return 0;
}
for(long long a = 2; a < n; a++) {
if(powmod(a, n, n) != a) {
//cout << a << endl;
return 0;
}
}
return 1;
}
int main(void) {
//cout << powmod(747, 1729, 1729) << endl;
while(1) {
int n;
cin >> n;
if(n == 0) {
break;
}
if(isCar(n)) {
cout << "The number " << n << " is a Carmichael number." << endl;
} else {
cout << n << " is normal." << endl;
}
}
return 0;
}
(全文完)
本文地址:http://blog.csdn.net/milkcu/article/details/23553323
Carmichael Numbers - PC110702的更多相关文章
- UVa 10006 - Carmichael Numbers
		
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
 - UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
		
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
 - UVA10006 - Carmichael Numbers
		
题目链接:UVA10006 本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了. Some numbers that are not prime ...
 - UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)
		
UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...
 - 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
		
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
 - Uva 10006 Carmichael Numbers (快速幂)
		
题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...
 - Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表
		
#include <cstdio> #include <iostream> #include <algorithm> #include <cmath> ...
 - Carmichael Numbers (快速幂)
		
当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加 ...
 - Mathematics:Pseudoprime numbers(POJ 3641)
		
强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...
 
随机推荐
- crontab 里不能运行expdp
			
编辑脚本 xxx.sh #!/bin/shrq=`date +%Y%m%d`filename="test$rq"expdp system/*** directory=expdump ...
 - erlang R17新socket选项{active,N}
			
erlang R17带来了新的socket选项{active,N} .与{active,once}连同应用层提供的流量控制.为什么会这样选择,{active,once}不能够有效地抑制了很多socke ...
 - javascript获取浏览器窗口大小办法
			
四个属性: 1:outerWidth 2:outerHeight 3:innerWidth 4:innerHeight 经最新版本的浏览器(Chrom IE Firefox Opera)测试,初 ...
 - POJ1201-Intervals(差动限制)
			
Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 20786 Accepted: 7866 Descri ...
 - 音乐TV2015校园招聘A第二大发行量(对中国科学院大学站)
			
标题叙述性说明:鉴于阵列A,尺寸n,数组元素1至n数位,但是,一些数字多次出现,有些数字不出现.请设计算法和程序.统计数据不会出现什么.什么号码多次出现. 您可以O(n)时间复杂度,O(1)求下完毕么 ...
 - (c#2.0)serialPort串口通讯
			
原文:(c#2.0)serialPort串口通讯 using System; using System.Collections.Generic; using System.ComponentModel ...
 - POJ 1182(食物链-另类做法【拆点】)[Template:并查集]
			
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 46039 Accepted: 13400 Description ...
 - HDU 4228 Flooring Tiles 反素数
			
推出了结论,万万没想到最后用搜索.. 还想dp来着.. #include <cstdio> #include <cstring> #include <iostream&g ...
 - javascirpt怎样模仿块级作用域(js高程笔记)
			
因为javascript没有块级作用域的概念,所以在块语句中定义的变量,实际上是在包括函数中而非语句中创建的. 如: function outputNumbers(count){ for(var i= ...
 - ios 设备基本信息检测
			
开发ios确实会让人身心愉悦(相对于deskop,android),ios app更多的让人集中注意力到它本身的体验,性能.这非常好,我非常喜欢相对完美的事物. 最近遇到一些乱七八糟的需求.需要获取一 ...