Carmichael Numbers - PC110702
欢迎访问我的新博客:http://www.milkcu.com/blog/
原文地址:http://www.milkcu.com/blog/archives/uva10006.html
原创:Carmichael Numbers - PC110702
作者:MilkCu
题目描述
| Carmichael Numbers |
An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field in computer science, and that life would not matter at all without cryptography.
 Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. Some of the cryptographic algorithms he is implementing make use of big prime numbers. However, checking if a big number is prime is not so easy. An exhaustive
approach can require the division of the number by all the prime numbers smaller or equal than its square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.
However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.
Let a be a random number between 2 and n - 1 (being n the number whose primality we are testing). Then, n is probably prime if the following equation holds:

If a number passes the Fermat test several times then it is prime with a high probability.
Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.
In this problem you are asked to write a program to test if a given number is a Carmichael number. Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella.
As a side note, we need to mention that, according to Alvaro, the main advantage of encrypted paella over conventional paella is that nobody but you knows what you are eating.
Input
The input will consist of a series of lines, each containing a small positive number n ( 2
< n < 65000). A number n = 0 will
mark the end of the input, and must not be processed.
Output
For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.
Sample Input
1729
17
561
1109
431
0
Sample Output
The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.
Miguel Revilla
2000-08-21
解题思路
Carmichael数肯定是个合数,且对于所有a都满足a^n mod n = a。
根据题目,按部就班的做。
在对乘方求模的时候可以使用递归的方法,减少计算时间:
(a mod n) ^ p mod n = ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p / 2) mod n) * ((a mod n) ^ (p % 2) mod n) mod n
注意不要超过整型范围,增加取模次数,使用long long类型。
不超过100000的16个卡迈克数如下:
561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,62745,63973,75361。
代码实现
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int isPri(int n) {
for(int i = 2; i <= sqrt(n); i++) {
if(n % i == 0) {
return 0;
}
}
return 1;
}
long long powmod(int a, int p, int n) {
if(p == 1) {
return a % n;
}
if(p == 0) {
return 1 % n;
}
return (powmod(a, p / 2, n) % n) * (powmod(a, p / 2, n) % n) * (powmod(a, p % 2, n) % n) % n;
}
int isCar(int n) {
if(isPri(n)) {
return 0;
}
for(long long a = 2; a < n; a++) {
if(powmod(a, n, n) != a) {
//cout << a << endl;
return 0;
}
}
return 1;
}
int main(void) {
//cout << powmod(747, 1729, 1729) << endl;
while(1) {
int n;
cin >> n;
if(n == 0) {
break;
}
if(isCar(n)) {
cout << "The number " << n << " is a Carmichael number." << endl;
} else {
cout << n << " is normal." << endl;
}
}
return 0;
}
(全文完)
本文地址:http://blog.csdn.net/milkcu/article/details/23553323
Carmichael Numbers - PC110702的更多相关文章
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- UVA10006 - Carmichael Numbers
题目链接:UVA10006 本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了. Some numbers that are not prime ...
- UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)
UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...
- 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
- Uva 10006 Carmichael Numbers (快速幂)
题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...
- Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表
#include <cstdio> #include <iostream> #include <algorithm> #include <cmath> ...
- Carmichael Numbers (快速幂)
当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加 ...
- Mathematics:Pseudoprime numbers(POJ 3641)
强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...
随机推荐
- 假设动态运行java文字,当在脚本式配置,这是非常方便的
package com.bfrj.core.groovy; import java.util.HashMap; import java.util.Map; import org.jeecgframew ...
- Before和After用法小结
Before和After用法小结 定义 :before 选择器在被选元素的内容前面插入内容.:after选择器在被选元素的内容后面插入内容.(注:必须包含content 属性) 一.特性:不能左右:e ...
- python_基础学习_02_拆分文件(spilt)
做爬虫经常会有这样的引用场景 ,原始网页存储格式为 url+\t+ html php 有个explode的 拆分文本行方法,比较方便直接接收列值 list($url,$html)=explode(& ...
- .net mvc mssql easyui treegrid
效果图 数据图 可以看到 这里是根据 MenuNo 来 分级别的,支持 无限极,第一级是 01 ,第二级就是 01XX ,第三级 就是 01XXOO.类似 id.pid ,Ztree 里面 也是这 ...
- Hibernat之关系的处理一对一处理
第一步:编写两个pojo,比如一个学生表一个班级表 这里使用注解. 需要 公司表: package com.qcf.pox; import javax.persistence.CascadeType ...
- animation渐进实现点点点等待效果实例页面
CSS代码: .ani_dot { font-family: simsun; } :root .ani_dot { display: inline-block; width: 1.5em; verti ...
- IntelliJ IDEA —— Android开发的另一个选择
IntelliJ IDEA —— Android开发的另一个选择 很早就听过Eclipse的大名,但在我初学Java的时候,一位前辈推荐的IDE却是IntelliJ IDEA.因为之前用过JetBra ...
- JS时间戳比较大小:对于一组时间戳(开始时间~结束时间)和另一组时间戳进行比较,用于判断被比较时间戳组是否在要求范围内
/* *JS时间戳比较大小:对于一组时间戳(开始时间~结束时间)和另一组时间戳进行比较,用于判断被比较时间戳组是否在要求范围内 *@param date1 date2(形如:'2015-01-01'类 ...
- 对JSON数组对象排序-有键相同的元素,分组数量不一致,可采用如下的JS进行循环表格输出
var now=eval(data.data); // now.sort(sortBy('bigIdOrder', true, parseInt)); var tab=""; va ...
- 【iOS】Xib的使用与File'Owner总结
一.XIB的适用范围 xib(也叫Nib)与storyboard一样是用来描写叙述界面的. storyboard描写叙述的是比較大型的,大范围.适合描写叙述界面跳转等. 二.XIB的使用 Xib是小范 ...