[置顶] ※数据结构※→☆线性表结构(queue)☆============队列 顺序存储结构(queue sequence)(八)
队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。
在队列这种数据结构中,最先插入的元素将是最先被删除的元素;反之最后插入的元素将是最后被删除的元素,因此队列又称为“先进先出”(FIFO—first in first out)的线性表。
队列(Queue)是只允许在一端进行插入,而在另一端进行删除的运算受限的线性表
(1)允许删除的一端称为队头(Front)。
(2)允许插入的一端称为队尾(Rear)。
(3)当队列中没有元素时称为空队列。
(4)队列亦称作先进先出(First In First Out)的线性表,简称为FIFO表。
队列的修改是依先进先出的原则进行的。新来的成员总是加入队尾(即不允许"加塞"),每次离开的成员总是队列头上的(不允许中途离队),即当前"最老的"成员离队。
顺序存储结构
在计算机中用一组地址连续的存储单元依次存储线性表的各个数据元素,称作线性表的顺序存储结构.
顺序存储结构是存储结构类型中的一种,该结构是把逻辑上相邻的节点存储在物理位置上相邻的存储单元中,结点之间的逻辑关系由存储单元的邻接关系来体现。由此得到的存储结构为顺序存储结构,通常顺序存储结构是借助于计算机程序设计语言(例如c/c++)的数组来描述的。
顺序存储结构的主要优点是节省存储空间,因为分配给数据的存储单元全用存放结点的数据(不考虑c/c++语言中数组需指定大小的情况),结点之间的逻辑关系没有占用额外的存储空间。采用这种方法时,可实现对结点的随机存取,即每一个结点对应一个序号,由该序号可以直接计算出来结点的存储地址。但顺序存储方法的主要缺点是不便于修改,对结点的插入、删除运算时,可能要移动一系列的结点。
优点:
随机存取表中元素。缺点:插入和删除操作需要移动元素。
本代码默认list可以容纳的item数目为100个,用户可以自行设置item数目。当list饱和时,会自动以2倍的长度进行递增。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
以后的笔记潇汀会尽量详细讲解一些相关知识的,希望大家继续关注我的博客。
本节笔记到这里就结束了。
潇汀一有时间就会把自己的学习心得,觉得比较好的知识点写出来和大家一起分享。
编程开发的路很长很长,非常希望能和大家一起交流,共同学习,共同进步。
如果文章中有什么疏漏的地方,也请大家指正。也希望大家可以多留言来和我探讨编程相关的问题。
最后,谢谢你们一直的支持~~~
C++完整个代码示例(代码在VS2005下测试可运行)
AL_QueueSeq.h
/**
@(#)$Id: AL_QueueSeq.h 35 2013-09-06 08:47:50Z xiaoting $
@brief A queue is a special linear form, so special is that it only allows the front end of the table (front) delete operation,
and the rear end of the table (rear) for insertion, and the stack, as the queue is an operating by restricted linear form. Insert
operation is called the tail end, the end delete operation called HOL. No element in the queue, it is called an empty queue. This data structure in the queue, the first element inserted will be the first element to be removed; otherwise the last inserted
element will be the last element to be removed, so the queue is also known as "first in first out" (FIFO-first in first out) linear
form. ////////////////////////////////Sequential storage structure//////////////////////////////////////////
Using a set of addresses in the computer storage unit sequentially stores continuous linear form of individual data elements, called
the linear order of the table storage structure. Sequential storage structure is a type of a storage structure, the structure is the logically adjacent nodes stored in the physical
location of the adjacent memory cells, the logical relationship between nodes from the storage unit to reflect the adjacency.
Storage structure thus obtained is stored in order structure, usually by means of sequential storage structure computer programming
language (e.g., c / c) of the array to describe. The main advantage of the storage structure in order to save storage space, because the allocation to the data storage unit storing
all nodes with data (without regard to c / c language in the array size required for the case), the logical relationship between
the nodes does not take additional storage space. In this method, the node can be realized on a random access, that is, each node
corresponds to a number, the number can be calculated directly from the node out of the memory address. However, the main
disadvantage of sequential storage method is easy to modify the node insert, delete operations, may have to move a series of nodes.
Benefits:
Random Access table elements. Disadvantages: insert and delete operations need to move elements. @Author $Author: xiaoting $
@Date $Date: 2013-09-06 16:47:50 +0800 (周五, 06 九月 2013) $
@Revision $Revision: 35 $
@URL $URL: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_QueueSeq.h $
@Header $Header: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_QueueSeq.h 35 2013-09-06 08:47:50Z xiaoting $
*/ #ifndef CXX_AL_QUEUESEQ_H
#define CXX_AL_QUEUESEQ_H ///////////////////////////////////////////////////////////////////////////
// AL_QueueSeq
/////////////////////////////////////////////////////////////////////////// template<typename T>
class AL_QueueSeq
{
public:
static const DWORD QUEUESEQ_DEFAULTSIZE = 100;
static const DWORD QUEUESEQ_MAXSIZE = 0xffffffff;
/**
* Construction
*
* @param DWORD dwSize (default value: STACKSEQ_DEFAULTSIZE)
* @return
* @note
* @attention
*/
AL_QueueSeq(DWORD dwSize = QUEUESEQ_DEFAULTSIZE); /**
* Destruction
*
* @param
* @return
* @note
* @attention
*/
~AL_QueueSeq(); /**
* Empty
*
* @param VOID
* @return BOOL
* @note Returns true queue is empty
* @attention
*/
BOOL Empty() const; /**
* Front
*
* @param VOID
* @return T
* @note Returns a reference to the first element at the front of the queue.
* @attention
*/
T Front() const; /**
* Back
*
* @param VOID
* @return T
* @note Returns a reference to the last and most recently added element at the back of the queue.
* @attention
*/
T Back() const; /**
* Pop
*
* @param VOID
* @return T
* @note Removes an element from the front of the queue.
* @attention
*/
T Pop(); /**
* Push
*
* @param VOID
* @return DWORD
* @note Adds an element to the back of the queue.
* @attention
*/
VOID Push(const T& tTemplate); /**
* Size
*
* @param VOID
* @return DWORD
* @note Returns the number of elements in the queue
* @attention
*/
DWORD Size() const; /**
* Clear
*
* @param VOID
* @return VOID
* @note clear all data
* @attention
*/
VOID Clear(); protected:
private:
/**
* GetBuffer
*
* @param VOID
* @return VOID
* @note get the work buffer
* @attention when the buffer is not enough, it will become to double
*/
VOID GetBuffer(); /**
* IsFull
*
* @param VOID
* @return BOOL
* @note the buffer is full?
* @attention
*/
BOOL IsFull() const; public:
protected:
private:
T* m_pElements;
DWORD m_dwMaxSize;
DWORD m_dwSize; DWORD m_dwFront;
DWORD m_dwRear;
}; /**
* Construction
*
* @param DWORD dwSize (default value: STACKSEQ_DEFAULTSIZE)
* @return
* @note
* @attention
*/
template<typename T>
AL_QueueSeq<T>::AL_QueueSeq(DWORD dwSize):
m_pElements(NULL),
m_dwMaxSize(dwSize),
m_dwSize(0x00),
m_dwFront(0x00),
m_dwRear(0x00)
{
if (0x00 == m_dwMaxSize) {
//for memory deal
m_dwMaxSize = 1;
}
GetBuffer();
} /**
* Destruction
*
* @param
* @return
* @note
* @attention
*/
template<typename T>
AL_QueueSeq<T>::~AL_QueueSeq()
{
if (NULL != m_pElements) {
delete[] m_pElements;
m_pElements = NULL;
}
} /**
* Empty
*
* @param VOID
* @return BOOL
* @note Returns true queue is empty
* @attention
*/
template<typename T> BOOL
AL_QueueSeq<T>::Empty() const
{
return (0x00 == m_dwSize) ? TRUE:FALSE;
} /**
* Front
*
* @param VOID
* @return T
* @note Returns a reference to the first element at the front of the queue.
* @attention
*/
template<typename T> T
AL_QueueSeq<T>::Front() const
{
T tTypeTemp;
memset(&tTypeTemp, 0x00, sizeof(T)); if (TRUE ==Empty()) {
return tTypeTemp;
} return m_pElements[m_dwFront];
} /**
* Back
*
* @param VOID
* @return T
* @note Returns a reference to the last and most recently added element at the back of the queue.
* @attention
*/
template<typename T> T
AL_QueueSeq<T>::Back() const
{
T tTypeTemp;
memset(&tTypeTemp, 0x00, sizeof(T)); if (TRUE ==Empty()) {
return tTypeTemp;
} return m_pElements[m_dwRear];
} /**
* Pop
*
* @param VOID
* @return T
* @note Removes an element from the front of the queue.
* @attention
*/
template<typename T> T
AL_QueueSeq<T>::Pop()
{
T tTypeTemp;
memset(&tTypeTemp, 0x00, sizeof(T)); if (TRUE ==Empty()) {
return tTypeTemp;
}
tTypeTemp = m_pElements[m_dwFront];
memset(&m_pElements[m_dwFront], 0x00, sizeof(T)); m_dwFront++;
m_dwSize--;
return tTypeTemp;
} /**
* Push
*
* @param VOID
* @return DWORD
* @note Adds an element to the back of the queue.
* @attention
*/
template<typename T> VOID
AL_QueueSeq<T>::Push(const T& tTemplate)
{
if (TRUE == IsFull()) {
// full, need to get more work buffer
GetBuffer();
} if (0x00 == m_dwFront && TRUE == Empty()) {
//the first time Push, not need to ++
m_dwRear = 0x00;
}
else {
m_dwRear++;
}
m_pElements[m_dwRear] = tTemplate; m_dwSize++;
} /**
* Size
*
* @param VOID
* @return DWORD
* @note Returns the number of elements in the queue
* @attention
*/
template<typename T> DWORD
AL_QueueSeq<T>::Size() const
{
return m_dwSize;
} /**
* Clear
*
* @param VOID
* @return VOID
* @note clear all data
* @attention
*/
template<typename T> VOID
AL_QueueSeq<T>::Clear()
{
memset(m_pElements, 0x00, sizeof(T)*Size());
m_dwSize = 0x00;
m_dwFront = 0x00;
m_dwRear = 0x00;
} /**
* GetBuffer
*
* @param VOID
* @return VOID
* @note get the work buffer
* @attention when the buffer is not enough, it will become to double
*/
template<typename T> VOID
AL_QueueSeq<T>::GetBuffer()
{ if ( (FALSE == IsFull()) &&(NULL != m_pElements) ) {
//we do not need to get more buffer
return;
} if (NULL == m_pElements) {
if(0 < m_dwMaxSize){
//get the new work buffer
m_pElements = new T[m_dwMaxSize];
memset(m_pElements, 0x00, sizeof(T)*m_dwMaxSize);
}
return;
} //we need to get more buffer, store the previous pointer
T* pLastTpye = NULL;
DWORD pLastSize = 0x00; // it will become to double
pLastSize = m_dwMaxSize;
pLastTpye = m_pElements;
if (QUEUESEQ_MAXSIZE/2 < m_dwMaxSize) {
m_dwMaxSize = QUEUESEQ_MAXSIZE;
}
else {
m_dwMaxSize *= 2;
}
if(0 < m_dwMaxSize){
//get the new work buffer
m_pElements = new T[m_dwMaxSize];
memset(m_pElements, 0x00, sizeof(T)*m_dwMaxSize);
}
//need to copy the last to the current
memcpy(m_pElements, pLastTpye, sizeof(T)*pLastSize);
//free the last work buffer
delete[] pLastTpye;
pLastTpye = NULL;
} /**
* IsFull
*
* @param
* @return BOOL
* @note the buffer is full?
* @attention
*/
template<typename T> BOOL
AL_QueueSeq<T>::IsFull() const
{
return (m_dwMaxSize <= m_dwFront+Size()) ? TRUE:FALSE;
} #endif // CXX_AL_QUEUESEQ_H
/* EOF */
测试代码
#ifdef TEST_AL_QUEUESEQ
AL_QueueSeq<DWORD> cQueueSeq(1);
BOOL bEmpty = cQueueSeq.Empty();
std::cout<<bEmpty<<std::endl;
DWORD dwSize = cQueueSeq.Size();
std::cout<<dwSize<<std::endl;
DWORD dwFront = cQueueSeq.Front();
std::cout<<dwFront<<std::endl;
DWORD dwBack = cQueueSeq.Back();
std::cout<<dwBack<<std::endl;
DWORD dwPop = cQueueSeq.Pop();
std::cout<<dwPop<<std::endl; cQueueSeq.Push(999);
bEmpty = cQueueSeq.Empty();
std::cout<<bEmpty<<std::endl;
dwSize = cQueueSeq.Size();
std::cout<<dwSize<<std::endl;
dwFront = cQueueSeq.Front();
std::cout<<dwFront<<std::endl;
dwBack = cQueueSeq.Back();
std::cout<<dwBack<<std::endl;
dwPop = cQueueSeq.Pop();
std::cout<<dwPop<<std::endl; for (DWORD dwCnt=1; dwCnt<16; dwCnt++) {
cQueueSeq.Push(dwCnt);
dwBack = cQueueSeq.Back();
std::cout<<dwBack<<std::endl;
} dwSize = cQueueSeq.Size();
std::cout<<dwSize<<std::endl;
dwFront = cQueueSeq.Front();
std::cout<<dwFront<<std::endl; while (0x00 != cQueueSeq.Size()) {
dwPop = cQueueSeq.Pop();
std::cout<<dwPop<<std::endl;
} bEmpty = cQueueSeq.Empty();
std::cout<<bEmpty<<std::endl;
dwSize = cQueueSeq.Size();
std::cout<<dwSize<<std::endl;
dwFront = cQueueSeq.Front();
std::cout<<dwFront<<std::endl;
dwBack = cQueueSeq.Back();
std::cout<<dwBack<<std::endl;
dwPop = cQueueSeq.Pop();
std::cout<<dwPop<<std::endl; #endif
[置顶] ※数据结构※→☆线性表结构(queue)☆============队列 顺序存储结构(queue sequence)(八)的更多相关文章
- [置顶] ※数据结构※→☆线性表结构(queue)☆============循环队列 顺序存储结构(queue circular sequence)(十)
循环队列 为充分利用向量空间,克服"假溢出"现象的方法是:将向量空间想象为一个首尾相接的圆环,并称这种向量为循环向量.存储在其中的队列称为循环队列(Circular Queue). ...
- [置顶] ※数据结构※→☆线性表结构(queue)☆============优先队列 链式存储结构(queue priority list)(十二)
优先队列(priority queue) 普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除.在优先队列中,元素被赋予优先级.当访问元素时,具有最高优先级的元素最先删除.优先队列具有 ...
- [置顶] ※数据结构※→☆线性表结构(stack)☆============栈 序列表结构(stack sequence)(六)
栈(stack)在计算机科学中是限定仅在表尾进行插入或删除操作的线性表.栈是一种数据结构,它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据.栈 ...
- [置顶] ※数据结构※→☆线性表结构(list)☆============单向链表结构(list single)(二)
单向链表(单链表)是链表的一种,其特点是链表的链接方向是单向的,对链表的访问要通过顺序读取从头部开始:链表是使用指针进行构造的列表:又称为结点列表,因为链表是由一个个结点组装起来的:其中每个结点都有指 ...
- [置顶] ※数据结构※→☆线性表结构(list)☆============双向链表结构(list double)(三)
双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点. ~~~~~~~~~~~~ ...
- 数据结构----线性表顺序和链式结构的使用(c)
PS:在学习数据结构之前,我相信很多博友也都学习过一些语言,比如说java,c语言,c++,web等,我们之前用的一些方法大都是封装好的,就java而言,里面使用了大量的封装好的方法,一些算法也大都写 ...
- [从今天开始修炼数据结构]线性表及其实现以及实现有Itertor的ArrayList和LinkedList
一.线性表 1,什么是线性表 线性表就是零个或多个数据元素的有限序列.线性表中的每个元素只能有零个或一个前驱元素,零个或一个后继元素.在较复杂的线性表中,一个数据元素可以由若干个数据项组成.比如牵手排 ...
- [数据结构-线性表1.2] 链表与 LinkedList<T>(.NET 源码学习)
[数据结构-线性表1.2] 链表与 LinkedList<T> [注:本篇文章源码内容较少,分析度较浅,请酌情选择阅读] 关键词:链表(数据结构) C#中的链表(源码) 可空类 ...
- C# 数据结构 线性表(顺序表 链表 IList 数组)
线性表 线性表是最简单.最基本.最常用的数据结构.数据元素 1 对 1的关系,这种关系是位置关系. 特点 (1)第一个元素和最后一个元素前后是没有数据元素,线性表中剩下的元素是近邻的,前后都有元素. ...
随机推荐
- 用ASP编写购物车代码
网上购物已成为生活的潮流,在网上购物之后,想要随时查看自己已买的东西,想要随时删除或改动某件商品数量,要怎么做呢?以下我就来写代码及释义.先来做用户登陆页面(login.asp): <html& ...
- ListBox控件
主要介绍:自定义数据.绑定数据库数据 前台代码: <div> <asp:ListBox ID=" Width ="100px"> <asp: ...
- oracle 11gR2默认密码修改
很久以前装了Oracle,今天终于下决心要学一学了,结果一上午的时间就贡献给如何连接数据库上了 忘记了安装时设置的用户名和密码怎么办?查了下网上的资料,终于解决了! 方法一: 首先进入sqlplus: ...
- BZOJ 3211: 花神游历各国( 线段树 )
线段树...区间开方...明显是要处理到叶节点的 之前在CF做过道区间取模...差不多, 只有开方, 那么每个数开方次数也是有限的(0,1时就会停止), 最大的数10^9开方10+次也就不会动了.那么 ...
- VSTO不能创建OFFICE 文档项目的原因
正用的好好的,突然vsto不能用了.我是安装的vs2015 社区版本,本身是不带vsto的,当初不知道怎吗安装上的,昨天突然不能用了.症状是创建excel workbook 类型的项目是失败(创建ad ...
- Mac OSX的开机启动配置
Login Items Mac OSX的当前用户成功登录后启动的程序,该类别的启动项配置文件存放在~/Library/Preferences/com.apple.loginitems.plist,所以 ...
- two sets of Qt binaries into the same process的解决办法
突然出现了这样问题,吓死我,然后只是把原来编译好的app里面所有的东西删除再编译就好了. 如果删除后不行,可以试试后面的截图所说,反正我是没有试过的 Starting /Qtwork/build-te ...
- 一个故事讲清楚NIO(转)
转载请引用:一个故事讲清楚NIO 假设某银行只有10个职员.该银行的业务流程分为以下4个步骤: 1) 顾客填申请表(5分钟): 2) 职员审核(1分钟): 3) 职员叫保安去金库取钱(3分钟): 4) ...
- Tri_integral Summer Training 9 总结
比赛链接 A B C D H I J K 多灾多难的 Summer Training 9,前一天挂了一场比赛,结果题一半不能做,于是打了一个小时就放弃了.之后的两场Summer Training 9一 ...
- Resist the Temptation of the Singleton Pattern
Resist the Temptation of the Singleton Pattern Sam Saariste THE SiNGLETON PATTERN SOLVES MANY OF YOU ...