题意:有一个随机数生成器  x[i+1]=(a*x[i]+b)%10001

已知  x1,x3,x5...求 x2,x4,x6......

x的个数为 2n (n<=10000) a,b也在 0到10000之间

分析,有 a,b两个未知数,不好解方程,只能通过枚举

比赛的时候想了一下枚举a,b感觉复杂度略大 没敢写(后来据说姿势优美的暴力也能过)

正解是枚举 a,求b

带入x1,x3即可得到一个很简单的exgcd同余方程,对0,10000的每一个a,解出一个b进行验证即可

代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define mod 10001
long long in[];
long long out[];
long long exgcd(long long a,long long b,long long &x,long long &y)
{
if(!b)
{
x=;
y=;
return a;
}
long long tt=exgcd(b,a%b,x,y);
long long t;
t=x;
x=y;
y=(t-a/b*y);
return tt; }
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%I64d",in+i);
int ok=;
for(long long i=;i<=;i++)
{
long long c=((in[]-i*i*in[]%)%+)%;
long long a=i+;
long long b=-;
long long x,y;
long long d=exgcd(a,b,x,y);
if(c%d)
continue;
long long t=abs(b/d);
x*=c/d;
x=(x%t+t)%t;
for(int j=;j<n;j++)
{
out[j]=(i*in[j]+x)%;
if(j==n-)
{
ok=;
break;
}
if(((i*out[j]+x)%)!=in[j+])
break;
}
if(ok)
break;
}
if(!ok)
{
puts("bug");
}
for(int i=;i<n;i++)
{
printf("%I64d\n",out[i]);
}
return ;
}

hdu2769:枚举+同余方程的更多相关文章

  1. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  2. BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)

    zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...

  3. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  4. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  5. 【lydsy1407】拓展欧几里得求解不定方程+同余方程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...

  6. 高次同余方程模板BabyStep-GiantStep

    /************************************* ---高次同余方程模板BabyStep-GiantStep--- 输入:对于方程A^x=B(mod C),调用BabySt ...

  7. 运用模逆运算(同余方程)来解决Matlab课上的一道思考题

    一道Matlab编程题 & 暴力解法 Matlab课上老师出了这样一道题: 一个篮子有K个鸡蛋: 2个2个拿剩1个: 3个3个全部拿完: 4个4个拿剩1: 5个5个拿剩4个: 6个6个拿剩3个 ...

  8. POJ 2947-Widget Factory(高斯消元解同余方程式)

    题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...

  9. UVA 11754 Code Feat 中国剩余定理+枚举

    Code FeatUVA - 11754 题意:给出c个彼此互质的xi,对于每个xi,给出ki个yj,问前s个ans满足ans%xi的结果在yj中有出现过. 一看便是个中国剩余定理,但是同余方程组就有 ...

随机推荐

  1. Sqlserver更新数据表xml类型字段内容某个节点值的脚本

    GO USE [JC2010_MAIN_DB] 1.新建备份表JobObjectVersion_JCSchemVersion_BCK) GO IF EXISTS (SELECT * FROM sys. ...

  2. igmpproxy源码学习——igmpProxyInit()

    igmpproxy源码学习--igmpProxyInit()函数具体解释.igmpproxy初始化 在执行igmpproxy的主程序igmpproxyRun()之前须要对igmpproxy进行一些配置 ...

  3. Android学习路线(二十七)键值对(SharedPreferences)存储

    假设你又一个相对较小的键值对数据想要保存,你应该使用SharedPreferences APIs.一个SharedPreferences 对象指向一个包括键值对的文件,它提供简单的方法来读写他们.每一 ...

  4. android 多项对话框

    在main.xml中 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:a ...

  5. Ubuntu 搭建NDK环境

    一. NDK下载地址 https://developer.android.com/tools/sdk/ndk/index.html 二. NDK环境两种方式 NDK下载后,解压缩后放置于目录/home ...

  6. linux防火墙开启-关闭

    1.永久性生效,重启后不会复原 开启: chkconfig iptables on 关闭: chkconfig iptables off 2. 即时生效,重启后复原 开启: service iptab ...

  7. mysql 数据库 备份 还原

    参考资料: http://blog.51yip.com/mysql/139.html

  8. C#利用ODP.NET往oracle中高效插入百万数据

    由于工作的原因,要使用winform来处理大量的数据,但是c#自带的System.data.OracleClient效率不是很高,在网上找了很久,找到了ODP.NET,是oracle为c#提供的.貌似 ...

  9. easyui 快速开发整理

    下面整理了关于easyui的datagrid的开发文档,复制黏贴即刻使用 1: <link href="../../Content/easyUI/themes/default/easy ...

  10. Swift--集合类型 数组 字典 集合

    数组 1.创建一个数组 var someInts = [Int]()空数组 someInts = []清空 var threeDoubles = Array(repeating: 0.0, count ...