Description:

给你一棵n个点的树,编号1~n。每个点可以是黑色,可以是白色。初始时所有点都是黑色。下面有两种操作请你操作给我们看:

0 u:询问有多少个节点v满足路径u到v上所有节点(包括)都拥有相同的颜色

1 u:翻转u的颜色

Hint:

\(n\le 10^5\)

Solution:

这题我一开始用树剖写,然后随机数据跑得飞快,交上去被菊花图卡飞23333333

树剖正解,详见https://www.cnblogs.com/ivorysi/p/10103010.html

但是.......树剖写法太毒瘤了!!!

所以这里介绍的是LCT做法

不得不说比较巧妙

考虑用2颗LCT维护两种颜色的联通块

并且把点的颜色存到边上

每次修改就在一颗LCT上断边,另一颗LCT上连这条边

同时LCT维护子树信息,询问直接搞就行了

我的LCT还是太菜了,看了好久才看懂

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e6+5;
int n,m,cnt=1;
int f[mxn],hd[mxn],col[mxn]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt;
}t[mxn<<1]; inline void add(int u,int v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
} struct LCT {
int fa[mxn],s[mxn],sz[mxn],ch[mxn][2];
void push_up(int x) {
sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+s[x]+1;
}
int isnotrt(int x) {
return ch[fa[x]][0]==x||ch[fa[x]][1]==x;
}
void rotate(int x) {
int y=fa[x],z=fa[y],tp=ch[y][1]==x;
if(isnotrt(y)) ch[z][ch[z][1]==y]=x; fa[x]=z;
ch[y][tp]=ch[x][tp^1]; fa[ch[x][tp^1]]=y;
ch[x][tp^1]=y; fa[y]=x;
push_up(y),push_up(x);
}
void splay(int x) {
while(isnotrt(x)) {
int y=fa[x],z=fa[y];
if(isnotrt(y))
(ch[y][1]==x)^(ch[z][1]==y)?rotate(x):rotate(y);
rotate(x);
}
}
void access(int x) {
for(int y=0;x;x=fa[y=x]) {
splay(x);
s[x]+=sz[ch[x][1]];
ch[x][1]=y;
s[x]-=sz[ch[x][1]];
}
}
int findrt(int x) {
access(x); splay(x);
while(ch[x][0]) x=ch[x][0];
splay(x); return x;
}
void link(int x) {
splay(x); fa[x]=f[x];
int y=f[x]; access(y); splay(y);
s[y]+=sz[x]; sz[y]+=sz[x];
}
void cut(int x) {
access(x); splay(x);
ch[x][0]=fa[ch[x][0]]=0;
push_up(x);
}
}lct[2]; void dfs(int u,int fa) {
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u); f[v]=u; lct[0].link(v);
}
} int main()
{
n=read(); int u,v;
for(int i=1;i<=n+1;++i) lct[0].sz[i]=lct[1].sz[i]=1; //千万不要忘记赋初值
for(int i=1;i<n;++i) {
u=read(); v=read();
add(u,v); add(v,u);
}
dfs(1,0); f[1]=n+1; //1节点也必须有父亲
lct[0].link(1); m=read();
for(int i=1;i<=m;++i) {
u=read(); v=read();
if(u==1) lct[col[v]].cut(v),lct[col[v]^=1].link(v);
else {
int tp=lct[col[v]].findrt(v);
printf("%d\n",lct[col[v]].sz[lct[col[v]].ch[tp][1]]);
}
}
return 0;
}

[QTree6]Query on a tree VI的更多相关文章

  1. QTREE6 - Query on a tree VI 解题报告

    QTREE6 - Query on a tree VI 题目描述 给你一棵\(n\)个点的树,编号\(1\)~\(n\).每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我 ...

  2. SP16549 QTREE6 - Query on a tree VI LCT维护颜色联通块

    \(\color{#0066ff}{ 题目描述 }\) 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v ...

  3. 洛谷SP16549 QTREE6 - Query on a tree VI(LCT)

    洛谷题目传送门 思路分析 题意就是要维护同色连通块大小.要用LCT维护子树大小就不说了,可以看看蒟蒻的LCT总结. 至于连通块如何维护,首先肯定可以想到一个很naive的做法:直接维护同色连通块,每次 ...

  4. SPOJ 16549 - QTREE6 - Query on a tree VI 「一种维护树上颜色连通块的操作」

    题意 有操作 $0$ $u$:询问有多少个节点 $v$ 满足路径 $u$ 到 $v$ 上所有节点(包括)都拥有相同的颜色$1$ $u$:翻转 $u$ 的颜色 题解 直接用一个 $LCT$ 去暴力删边连 ...

  5. SP16549 QTREE6 - Query on a tree VI(LCT)

    题意翻译 题目描述 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括)都拥 ...

  6. SPOJ QTREE6 Query on a tree VI 树链剖分

    题意: 给出一棵含有\(n(1 \leq n \leq 10^5)\)个节点的树,每个顶点只有两种颜色:黑色和白色. 一开始所有的点都是黑色,下面有两种共\(m(1 \leq n \leq 10^5) ...

  7. bzoj3637 CodeChef SPOJ - QTREE6 Query on a tree VI 题解

    题意: 一棵n个节点的树,节点有黑白两种颜色,初始均为白色.两种操作:1.更改一个节点的颜色;2.询问一个节点所处的颜色相同的联通块的大小. 思路: 1.每个节点记录仅考虑其子树时,假设其为黑色时所处 ...

  8. bzoj 3637: Query on a tree VI 树链剖分 && AC600

    3637: Query on a tree VI Time Limit: 8 Sec  Memory Limit: 1024 MBSubmit: 206  Solved: 38[Submit][Sta ...

  9. QTREE6&&7 - Query on a tree VI &&VII

    树上连通块 不用具体距离,只询问连通块大小或者最大权值 可以类比Qtree5的方法,但是记录东西很多,例如子树有无0/1颜色等 一个trick,两个LCT分离颜色 每个颜色在边上. 仅保留连通块顶部不 ...

随机推荐

  1. 二叉查找树及B-树、B+树、B*树变体

    动态查找树主要有二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree), 红黑树 (Red-Black Tree ), 都是典型的 ...

  2. poj2398

    题解: 计算几何入门题 对每个二分最近的在它右边的杆子 如何判断一个杆子在它右边呢 计算机判断这些要更善于利用点积和叉积 如果叉积为正代表在顺时针方向叉积为负在逆时针 发现要在struct里面重载运算 ...

  3. 【译】学习JavaScript中提升、作用域、闭包的终极指南

    这似乎令人惊讶,但在我看来,理解JavaScript语言最重要和最基本的概念是理解执行上下文.通过正确学习它,你将很好地学习更多高级主题,如提升,作用域链和闭包.考虑到这一点,究竟什么是"执 ...

  4. UOJ#207. 共价大爷游长沙 LCT

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ207.html 题解 第一次听说 LCT 还可以维护子树信息. 首先对于每一条路径 rand 一个值,分别 ...

  5. BZOJ3393 [Usaco2009 Jan]Laserphones 激光通讯 BFS

    原文链接http://www.cnblogs.com/zhouzhendong/p/8371735.html 题目传送门 - BZOJ3393 题意概括 直接看原题的翻译吧,很容易懂的. 题解 我不知 ...

  6. C#基础:委托之Action<T>和Func<T>的用法

  7. 关系网络数据可视化:2. Python数据预处理

    将数据中导演与演员的关系整理出来,得到导演与演员的关系数据,并统计合作次数 import numpy as np import pandas as pd import matplotlib.pyplo ...

  8. day 69 orm操作之表关系,多对多,多对一(wusir总结官网的API)

    对象  关系  模型 wusir博客地址orm官网API总结 django官网orm-API orm概要: ORM 跨表查询 class Book(models.Model): title = mod ...

  9. day 51 js-2 函数,对象,正则 (定时器示例)

    本文转载自cnblogs.liwenzhou-----哪吒博客 先来一个定时器让我们看看函数的效果: <script src="/js/jquery-3.2.1.min.js" ...

  10. Linux下C语言进程通讯编程

    代码: #include <stdio.h> #include <stdlib.h> #include <sys/shm.h> /*************基本的函 ...