比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖

由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方案总数,但是我们发现这样可能会导致一些不合法的状态也得到转移,因此我们考虑倒推

用\(f_{i,j}\)表示表示在第\(1\)轮到第\(i-1\)轮内宝物是否取过的状态为\(j\),第\(i\)轮到第\(k\)轮的最大期望得分,那么这样就可以通过倒推进行转移了。

具体转移的时候我们枚举所有的宝物限制,那么转移就很明显了

不过由于这里要求的是期望值,而每一次需要除以\(n\),最后的\(f_{1,0}\)即为答案

CODE

#include<cstdio>
#include<cctype>
using namespace std;
typedef double DB;
const int N=16,INF=-1e9;
int n,p[N],m,s[N],x,tot;
DB f[105][(1<<N)+5];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline int calc(int x)
{
int res=0; while (x) res+=x&1,x>>=1; return res;
}
inline DB max(DB a,DB b)
{
return a>b?a:b;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(m); read(n); tot=(1<<n)-1;
for (i=0;i<n;++i)
{
read(p[i]); read(x);
while (x) s[i]|=(1<<x-1),read(x);
}
for (i=m;i>=1;--i)
for (j=0;j<=tot;++j)
{
for (k=0;k<n;++k)
if ((s[k]&j)==s[k]) f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<k)]+p[k]); else f[i][j]+=f[i+1][j];
f[i][j]=(DB)f[i][j]/n;
}
return printf("%.6lf",f[1][0]),0;
}

Luogu P2473 [SCOI2008]奖励关的更多相关文章

  1. LG P2473 [SCOI2008]奖励关

    题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 < ...

  2. P2473 [SCOI2008]奖励关(期望)

    P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...

  3. 洛谷 P2473 [SCOI2008]奖励关 解题报告

    P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...

  4. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  5. P2473 [SCOI2008]奖励关

    思路 n<=15,所以状压 因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1~i的宝物获得情况是S,i+1~k的期望 状态转移是当k可以取时,\(f[i][S]+=max(f[i+ ...

  6. 洛谷P2473 [SCOI2008]奖励关(期望+状压)

    传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...

  7. 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )

    题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...

  8. 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】

    P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...

  9. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

随机推荐

  1. Fiddler抓包使用教程-QuickExec

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/73468287 本文出自[赵彦军的博客] 在 Fiddler 中自带了一个 Quic ...

  2. UITableViewCell 获取当前位置

    CGRect rectInTableView = [tableView rectForRowAtIndexPath:indexPath]; CGRect rectInSuperview = [tabl ...

  3. VsCode 的使用

    一.简介 VsCode(Visual Studio Code),官网地址:https://code.visualstudio.com/ Visual Studio Code is a lightwei ...

  4. JUnit单元测试入门

    什么是单元测试 写了个类,要给别人用,会不会有bug?怎么办?测试一下. 用main方法测试好不好?不好! 不能一起运行! 大多数情况下需要人为的观察输出确定是否正确 为什么要进行单元测试 重用测试, ...

  5. PLSQL无法粘贴复制

    有2个原因会导致这个问题发生: 一:快捷键设置不正确,按照网上的设置方法把复制粘贴的快捷键重新设置一下,然后重启plsql 二:远程桌面连接开着,关闭后试下(亲测有效)

  6. apache配置CA证书通过https通信

    Apache Httpd 2.2 实现https加密通讯 实际生产中CA证书一般是向一些专业认证的国际机构来进行申请的.我们会模拟使用OpenSSL生成的证书,来实现Apache的安全加密通讯,这与实 ...

  7. SSRS奇怪报错Could not update a list of fields for the quer.

    今天遇到一个奇怪的问题,SSRS我觉得是个半成品,很多东西都搞不了.写了一段SQL,本来SQL写法都有点怪了,如下 WITH TMP_A AS (SELECT *,ROW_NUMBER() OVER( ...

  8. Spring boot 直接访问templates中html文件

    application.properties 在浏览器中输入http://localhost:8080/index.html 会报一个 因为Spring boot 无法直接访问templates下的文 ...

  9. MATLAB用二分法、不动点迭代法及Newton迭代(切线)法求非线性方程的根

    MATLAB用二分法.不动点迭代法及Newton迭代(切线)法求非线性方程的根 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验原理 二.实验步骤 ...

  10. account

    Account Doc V3_ADD 1. 用户头像 用户头像今后会放在阿里云上,所以: dev: http(s)://pyserver.oss-cn-hangzhou.aliyuncs.com/DE ...