Luogu P2473 [SCOI2008]奖励关
比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖
由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方案总数,但是我们发现这样可能会导致一些不合法的状态也得到转移,因此我们考虑倒推
用\(f_{i,j}\)表示表示在第\(1\)轮到第\(i-1\)轮内宝物是否取过的状态为\(j\),第\(i\)轮到第\(k\)轮的最大期望得分,那么这样就可以通过倒推进行转移了。
具体转移的时候我们枚举所有的宝物限制,那么转移就很明显了
不过由于这里要求的是期望值,而每一次需要除以\(n\),最后的\(f_{1,0}\)即为答案
CODE
#include<cstdio>
#include<cctype>
using namespace std;
typedef double DB;
const int N=16,INF=-1e9;
int n,p[N],m,s[N],x,tot;
DB f[105][(1<<N)+5];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline int calc(int x)
{
int res=0; while (x) res+=x&1,x>>=1; return res;
}
inline DB max(DB a,DB b)
{
return a>b?a:b;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(m); read(n); tot=(1<<n)-1;
for (i=0;i<n;++i)
{
read(p[i]); read(x);
while (x) s[i]|=(1<<x-1),read(x);
}
for (i=m;i>=1;--i)
for (j=0;j<=tot;++j)
{
for (k=0;k<n;++k)
if ((s[k]&j)==s[k]) f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<k)]+p[k]); else f[i][j]+=f[i+1][j];
f[i][j]=(DB)f[i][j]/n;
}
return printf("%.6lf",f[1][0]),0;
}
Luogu P2473 [SCOI2008]奖励关的更多相关文章
- LG P2473 [SCOI2008]奖励关
题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 < ...
- P2473 [SCOI2008]奖励关(期望)
P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...
- 洛谷 P2473 [SCOI2008]奖励关 解题报告
P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...
- 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)
题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...
- P2473 [SCOI2008]奖励关
思路 n<=15,所以状压 因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1~i的宝物获得情况是S,i+1~k的期望 状态转移是当k可以取时,\(f[i][S]+=max(f[i+ ...
- 洛谷P2473 [SCOI2008]奖励关(期望+状压)
传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...
- 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )
题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...
- 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】
P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...
- 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望
[BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...
随机推荐
- Units in Android
一般使用dp,不使用px.sp啥时候用呢?给TextView设置文字大小的时候用.
- GridView的簡單使用
項目GitHub地址:https://github.com/leonInShanghai/IMbobo GridView XML佈局: <?xml version="1.0" ...
- bs4爬虫入门
# -*- coding: utf-8 -*- """ Created on Fri Nov 16 13:35:33 2018 @author: zhen "& ...
- [20180630]truncate table的另类恢复2.txt
[20180630]truncate table的另类恢复2.txt --//上个星期做了truncate table的另类恢复,通过修改数据块的段号,再通过rowid定位收集数据,达到修复的目的.- ...
- asp.net mvc5中的过滤器重写
asp.net mvc5中增加了一种过滤器类型叫过滤器重写,这种过滤器类型可以在操作或者控制器上忽略更高层次上设置的过滤器类型,它可以重写五种基本的过滤器接口类型:IAuthenticationFil ...
- ES6 入门
1.简介 ECMAScript 6.0 是 JavaScript 语言的下一代标准,已经在 2015 年 6 月正式发布了.它的目标,是使得 JavaScript 语言可以用来编写复杂的大型应用程序, ...
- Oracle 单引号 双引号 转义符 分隔符
概述 单引号用来标记字符串 双引号用来标记识别对象名 以下使用会比较绕: 字符串中出现单引号.双引号: 表或字段等对象的别名(alias)中出单引号.双引号: 单引号.双引号与空格一起使用: 双引号 ...
- 【PAT】B1085 PAT单位排行(25 分)(c++实现)
终于做的有点眉目了,今天学习了一点stl的皮毛,解题瞬间变容易了 下边开始分析本题 这道题如果用纯c解决实在太麻烦,试了半天两个超时,果断放弃,还是用map方便: 我的方法与柳神的方法是有区别的,我只 ...
- linux内网IP如果判断出网IP地址
[root@jumpserver ~]# curl https://ip.cn当前 IP: 162.14.210.16 来自: 河南省郑州市 xx网络
- Reveal安装
一.安装 第一步:将Reveal.framework拖入工程中(下载地址:http://pan.baidu.com/s/1mgMJVDI,解压后产生的Reveal.framework,拖入工程即可). ...