http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html

內插是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方法。

根据若干离散的数据,得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。內插是曲线必须通过已知点的拟合。

1.线性插值

已知坐标 (x0, y0) 与 (x1, y1),要得到 [x0, x1] 区间内某一位置 x 在直线上的值。

由于 x 值已知,所以可以从公式得到 y 的值

已知 y 求 x 的过程与以上过程相同,只是 x 与 y 要进行交换。

例如,

原来的数值序列:0,10,20,30,40 
线性插值一次为:0,5,10,15,20,25,30,35,40 
即认为其变化(增减)是线形的,可以在坐标图上画出一条直线 。

线性插值经常用于补充表格中的间隔部分。

两值之间的线性插值基本运算在计算机图形学中的应用非常普遍,以至于在计算机图形学领域的行话中人们将它称为lerp。所有当今计算机图形处理器的硬件中都集成了线性插值运算,并且经常用来组成更为复杂的运算:例如,可以通过三步线性插值完成一次双线性插值运算。由于这种运算成本较低,所以对于没有足够数量条目的光滑函数来说,它是实现精确快速查找表的一种非常好的方法。

在一些要求较高的场合,线性插值经常无法满足要求。在这种场合,可以使用多项式插值或者样条插值来代替。

线性插值可以扩展到有两个变量的函数的双线性插值。双线性插值经常作为一种粗略的抗混叠滤波器使用,三线性插值用于三个变量的函数的插值。线性插值的其它扩展形势可以用于三角形与四面体等其它类型的网格运算。

2.双线性插值

在地球物理中,会经常用到双线性插值(Bilinear interpolation)。比如,模拟生成的地表均匀网格上的速度场或者同震位移场。要与GPS观测点上的观测同震位移场进行比较。就必须将均匀网格点的值插值到GPS太站上。这就需要用到双线性插值。

In mathematics, bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables(e.g, x andy) on a regular grid. The interpolated function should not use the term of x2 or y2, but xy, which is the bilinear form of x and y.

其核心思想是在两个方向分别进行一次线性插值

The key idea is to perform linear interpolation first in one direction, and then again in the other direction.Although each step is linear in the sampled values and in the position, the interpolation as a whole is not linear but rather quadratic in the sample location (details below).

红色的数据点与待插值得到的绿色点

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。

首先在 x 方向进行线性插值,得到

然后在 y 方向进行线性插值,得到

这样就得到所要的结果 f(x, y),

如果选择一个坐标系统使得 f 的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为

与这种插值方法名称不同的是,这种插值方法并不是线性的,它的形式是

它是两个线性函数的乘积。看到了吧,双线性插值并不是线性。

Contrary to what the name suggests, the bilinear interpolant is not linear

另外,插值也可以表示为

对于单位正方形,

在这两种情况下,常数的数目都对应于给定的 f 的数据点数目。

线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。

双线性插值的一个显然的三维空间延伸是三线性插值

3.三线性插值

  三线性插值是在三维离散采样数据的张量积网格上进行线性插值的方法。这个张量积网格可能在每一维度上都有任意不重叠的网格点,但并不是三角化的有限元分析网格。这种方法通过网格上数据点在局部的矩形棱柱上线性地近似计算点 (x,y,z) 的值。

  • 三线性插值在一次n=1三维D=3(双线性插值的维数:D=2,线性插值:D=1)的参数空间中进行运算,这样需要(1 + n)D = 8个与所需插值点相邻的数据点。
  • 三线性插值等同于三维张量的一阶B样条插值。
  • 三线性插值运算是三个线性插值运算的张量积。

  实例

  在一个步距为1的周期性立方网格上,取xd,yd,zd 为待计算点,距离小于 x,y,z, 的最大整数的差值,即,

  

  首先沿着z轴插值,得到:

  

  然后,沿着y轴插值,得到:

  w1 = i1(1 − yd) + i2yd

  w2 = j1(1 − yd) + j2yd

  最后,沿着x轴插值,得到:

  IV = w1(1 − xd) + w2xd
  这样就得到该点的预测值。

  三线性插值的结果与插值计算的顺序没有关系,也就是说,按照另外一种维数顺序进行插值,例如沿着 x、 y、z 顺序插值将会得到同样的结果。这也与张量积的交换律完全一致。

线性插值&双线性插值&三线性插值的更多相关文章

  1. [转]线性插值&双线性插值&三线性插值

    转自:http://www.cnblogs.com/yingying0907/archive/2012/11/21/2780092.html 內插是数学领域数值分析中的通过已知的离散数据求未知数据的过 ...

  2. 最近邻插值法&线性插值&双线性插值&三线性插值

    最近邻插值法nearest_neighbor是最简单的灰度值插值.也称作零阶插值,就是令变换后像素的灰度值等于距它最近的输入像素的灰度值. 造成的空间偏移误差为像素单位,计算简单,但不够精确.但当图像 ...

  3. RobHess的SIFT代码解析步骤四

    平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码 2.书:王永明 ...

  4. 从点云到网格(三)Poisson重建

    Possion重建是Kazhdan等2006年提出的网格重建方法[1].Possion重建的输入是点云及其法向量,输出是三维网格.Poisson有公开的源代码[2].PCL中也有Poisson的实现. ...

  5. Mipmap与纹理过滤

    为了加快渲染速度和减少纹理锯齿,贴图被处理成由一系列被预先计算和优化过的图片组成的文件,这样的贴图被称为Mipmap. 使用DirectX Texture Tool(DX自带工具)预生成Mipmap ...

  6. SIFT算法:特征描述子

    SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋 ...

  7. 【Unity技巧】调整画质(贴图)质量

    写在前面 当我们在Unity中,使用图片进行2D显示时,会发现显示出来的画面有明显的模糊或者锯齿,但是美术给的原图却十分清晰. 要改善这一状况实际上很简单. 造成这样的原因,是Unity在导入图片(或 ...

  8. 【语义分割】PSPNet中PSP模块的pytorch实现

    github地址:https://github.com/Lextal/pspnet-pytorch/blob/master/pspnet.py PSP模块示意图如下 代码如下 class PSPMod ...

  9. Android OpenGL ES(七)----理解纹理与纹理过滤

    1.理解纹理 OpenGL中的纹理能够用来表示图像.照片,甚至由一个数学算法生成的分形数据.每一个二维的纹理都由很多小的纹理元素组成.它们是小块的数据,类似于我们前面讨论过的片段和像素.要使用纹理,最 ...

随机推荐

  1. Oracle数据库的 增、删、改、查

    有时候数据库的查询语句一时想不起来,或不确定是不是语句写的正确,现在整理了一下标准的基本查询语句,便于以后牢记: .数据操作语言 DML:添加(insert into).修改(update   set ...

  2. linux-虚拟机centos6.5安装tools

    1.在VMWare选VM -> Install VMWare Tools-,就会在桌面出现VMWare Tools图示让你安裝 2.进入CentOS桌面后,将光盘打开,看到了VMWareTool ...

  3. java工具类

    1.HttpUtilsHttp网络工具类,主要包括httpGet.httpPost以及http参数相关方法,以httpGet为例:static HttpResponse httpGet(HttpReq ...

  4. 【codevs1106】 篝火晚会

    http://codevs.cn/problem/1106/ (题目链接) 题意 将1~n顺序排列的环改成另一个环,问n-不动点数. Solution 啊智障啦,不会做×_× 左转hzwer 代码 / ...

  5. 解读ASP.NET 5 & MVC6系列(12):基于Lamda表达式的强类型Routing实现

    前面的深入理解Routing章节,我们讲到了在MVC中,除了使用默认的ASP.NET 5的路由注册方式,还可以使用基于Attribute的特性(Route和HttpXXX系列方法)来定义.本章,我们将 ...

  6. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. 佛祖保佑 永无bug

    /* _ooOoo_ o8888888o 88" . "88 (| -_- |) O\ = /O ____/`---'\____ .' \\| |// `. / \\||| : | ...

  8. Markdown

    1. 斜体和粗体 代码: *斜体*或_斜体_ **粗体** ***加粗斜体*** ~~删除线~~ 显示效果: 这是一段斜体 这是一段粗体 这是一段加粗斜体 这是一段删除线 2. 分级标题 第一种写法: ...

  9. asp.net mvc 权限过滤和单点登录(禁止重复登录)

    1.权限控制使用controller和 action来实现,权限方式有很多种,最近开发项目使用控制控制器方式实现代码如下 /// <summary> /// 用户权限控制 /// < ...

  10. 一个解析json串并组装echarts的option的函数解析

    缘起: 在组装echart页面的时候,遇到这样一个问题,它是一个需要在循环内层的时候,同时循环外层,在内层循环中就要将外层获取的值存入,导致了一种纠缠状态,费了老劲儿,终于得到如下解决.记录之,绿色为 ...