题意:a1=0;a2=1;a3=2;    a(n)=a(n-1)+a(n-2)+a(n-3);     求a(n)

思路:矩阵快速幂

#include<cstdio>
#include<cstring>
#define ll long long
#define mod int(1e9+9)
struct jz
{
ll num[][];
jz(){ memset(num, , sizeof(num)); }
jz operator*(const jz&p)const
{
jz ans;
for (int k = ; k < ;++k)
for (int i = ; i < ;++i)
for (int j = ; j < ; ++j)
ans.num[i][j] = (ans.num[i][j] + num[i][k] * p.num[k][j] % mod) % mod;
return ans;
}
}p;
jz POW(jz x, ll n)
{
jz ans;
for (int i = ; i < ; i++)ans.num[i][i] = ;
for (; n;n>>=, x=x*x)
if (n & )ans = ans*x;
return ans;
}
void init()
{
p.num[][] = ; p.num[][] = ; p.num[][] = ;
p.num[][] = ; p.num[][] = ; p.num[][] = ;
p.num[][] = ; p.num[][] = ; p.num[][] = ;
}
int main()
{
ll n;
while (scanf("%lld", &n)!=EOF, n)
{
if (n == ){ printf("0\n"); }
else if (n == ){ printf("1\n"); }
else if (n == ){ printf("2\n"); }
else{
init();
jz ans = POW(p, n - );
printf("%lld\n", (( * ans.num[][]%mod + ans.num[][]))%mod);
}
}
}

Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)的更多相关文章

  1. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  3. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

  4. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  5. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

  6. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  7. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  8. POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17171   Accepted: 11999 Descr ...

  9. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  10. poj3070 (斐波那契,矩阵快速幂)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9630   Accepted: 6839 Descrip ...

随机推荐

  1. [总结] LCT学习笔记

    \(emmm\)学\(lct\)有几天了,大概整理一下这东西的题单吧 (部分参考flashhu的博客) 基础操作 [洛谷P1501Tree II] 题意 给定一棵树,要求支持 链加,删边加边,链乘,询 ...

  2. 发布webservice之后调用不通

    在websrvice发布文件的webconfig中加入 <httpRuntime maxRequestLength="102400" />  <webServic ...

  3. 部署DTCMS到Jexus遇到的问题及解决思路---部署

    上一篇我们环境已经准备完成,此时可以部署了,我们就以dtcms作为例子,http://bbs.dtcms.net/forum.php?mod=viewthread&tid=2420&e ...

  4. C#常用单元测试框架比较:XUnit、NUnit和Visual Studio(MSTest)

    做过单元测试的同学大概都知道以上几种测试框架,但我一直很好奇它们到底有什么不同,然后搜到了一篇不错的文章清楚地解释了这几种框架的最大不同之处. 地址在这里:http://www.tuicool.com ...

  5. Hash Table (youtube)

    here is a link for youtube about hash table which is super good https://www.youtube.com/watch?v=h2d9 ...

  6. linux学习笔记-文件相关知识

    我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 一.文件属性 在当前用户家目录下以ls -al命令输出为例: -rw-r--r--     1          renren  ...

  7. Python 函数介绍

    函数的作用 1.减少重复代码 2.方便修改,更易扩展 3.保持代码一致性 函数的命名规则: 1.函数名必须以下划线或字母开头,可以包含任意字母,数字或下划线的组合,不能使用任何的标点符号. 2.函数名 ...

  8. 微信小程序 数组索引 data-“”解释

    按照官方最新文档循环的方式,索引值是以  wx:for-index="index" 方式写的, 以   parseInt(event.currentTarget.dataset.i ...

  9. 将表格导出为excel

    <table id="tableExcel" border="1"> <tr> <th>零</th> <t ...

  10. git命令详解( 二 )

    这是git详解的第二篇,最近这个加班有点虚,所以文章也写的比较懒了,一到加班不得已,保温杯里泡枸杞啊,不扯了,今天我们来看看git的第二篇 这篇内容主要是git的一些远程命令 远程仓库 git clo ...