Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉、模式识别领域很常用的一种描述图像局部纹理的特征。这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了。那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申。
1.分割图像
因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的。原理很简单。从信息论角度讲,例如一幅640*480的图像,大概有30万个像素点,也就是说原始数据有30万维特征,如果直接做HOG的话,就算按照360度,分成360个bin,也没有表示这么大一幅图像的能力。从特征工程的角度看,一般来说,只有图像区域比较小的情况,基于统计原理的直方图对于该区域才有表达能力,如果图像区域比较大,那么两个完全不同的图像的HOG特征,也可能很相似。但是如果区域较小,这种可能性就很小。最后,把图像分割成很多区块,然后对每个区块计算HOG特征,这也包含了几何(位置)特性。例如,正面的人脸,左上部分的图像区块提取的HOG特征一般是和眼睛的HOG特征符合的。
接下来说HOG的图像分割策略,一般来说有overlap和non-overlap两种,如下图所示。overlap指的是分割出的区块(patch)互相交叠,有重合的区域。non-overlap指的是区块不交叠,没有重合的区域。这两种策略各有各的好处。
先说overlap,这种分割方式可以防止对一些物体的切割,还是以眼睛为例,如果分割的时候正好把眼睛从中间切割并且分到了两个patch中,提取完HOG特征之后,这会影响接下来的分类效果,但是如果两个patch之间overlap,那么至少在一个patch会有完整的眼睛。overlap的缺点是计算量大,因为重叠区域的像素需要重复计算。
再说non-overlap,缺点就是上面提到的,有时会将一个连续的物体切割开,得到不太“好”的HOG特征,优点是计算量小,尤其是与Pyramid(金字塔)结合时,这个优点更为明显。
2.计算每个区块的方向梯度直方图
将图像分割后,接下来就要计算每个patch的方向梯度直方图。步骤如下:
A.利用任意一种梯度算子,例如:sobel,laplacian等,对该patch进行卷积,计算得到每个像素点处的梯度方向和幅值。具体公式如下:
其中,Ix和Iy代表水平和垂直方向上的梯度值,M(x,y)代表梯度的幅度值,θ(x,y)代表梯度的方向。
B.将360度(2*PI)根据需要分割成若干个bin,例如:分割成12个bin,每个bin包含30度,整个直方图包含12维,即12个bin。然后根据每个像素点的梯度方向,利用双线性内插法将其幅值累加到直方图中。
C.(可选)将图像分割成更大的Block,并利用该Block对其中的每个小patch进行颜色、亮度的归一化,这一步主要是用来去掉光照、阴影等影响的,对于光照影响不剧烈的图像,例如很小区域内的字母,数字图像,可以不做这一步。而且论文中也提及了,这一步的对于最终分类准确率的影响也不大。
3.组成特征
将从每个patch中提取出的“小”HOG特征首尾相连,组合成一个大的一维向量,这就是最终的图像特征。可以将这个特征送到分类器中训练了。例如:有4*4=16个patch,每个patch提取12维的小HOG,那么最终特征的长度就是:16*12=192维。
4.一些引申
与pyramid相结合,即PHOG。PHOG指的是,对同一幅图像进行不同尺度的分割,然后计算每个尺度中patch的小HOG,最后将他们连接成一个很长的一维向量,作为特征。例如:对一幅512*512的图像先做3*3的分割,再做6*6的分割,最后做12*12的分割。接下来对分割出的patch计算小HOG,假设为12个bin即12维。那么就有9*12+36*12+144*12=2268维。需要注意的是,在将这些不同尺度上获得的小HOG连接起来时,必须先对其做归一化,因为3*3尺度中的HOG任意一维的数值很可能比12*12尺度中任意一维的数值大很多,这是因为patch的大小不同造成的。PHOG相对于传统HOG的优点,是可以检测到不同尺度的特征,表达能力更强。缺点是数据量和计算量都比HOG大了不少。
参考文献:
Navneet Dalal and Bill Triggs,《Histograms of Oriented Gradients for Human Detection》,2005
A. Bosch, A. Zisserman, and X. Munoz, 《Representing shape with a spatial pyramid kernel》,2007
Histogram of Oriented Gridients(HOG) 方向梯度直方图的更多相关文章
- 【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很 ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- 特征描述子(feature descriptor) —— HOG(方向梯度直方图)
HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方 ...
- 【翻译】HOG, Histogram of Oriented Gradients / 方向梯度直方图 介绍
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/ ...
- HOG(方向梯度直方图)
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測 ...
- 方向梯度直方图(HOG)和颜色直方图的一些比較
近期在学习视频检索领域的镜头切割方面的知识,发现经常使用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比較.大部分还是百科的内容,只是对 ...
- 【笔记】HOG (Histogram of Oriented Gradients, 方向梯度直方图)的开源实现
wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor h ...
- SIFT(Scale-invariant feature transform) & HOG(histogram of oriented gradients)
SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提 ...
- 梯度直方图(HOG,Histogram of Gradient)
1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该 ...
随机推荐
- StringBuffer的append方法比“+”高效
在字符串的连接过程中StringBuffer的效率要比String高: string操作代码: String str = new String("welcome to "); st ...
- curl用法一例 传递代理用户名密码
curl -u bb0e1736d66744495b814b942fd04a80:0e11dda88048ed52cc8758caf06dc6b4 https://jinshuju.net/api/v ...
- CentOS 离线安装Gitlab-ce
1. 上gtilab的官网,找了一下安装说明.. 首先安装 依赖的包 sudo yum install -y curl policycoreutils-python openssh-server cr ...
- protocol buffer开发指南(官方)
欢迎来到protocol buffer的开发者指南文档,一种语言无关.平台无关.扩展性好的用于通信协议.数据存储的结构化数据序列化方法. 本文档是面向计划将protocol buffer使用的到自己的 ...
- sql语句中日期相减的操作
select datediff(year, 开始日期,结束日期); --两日期间隔年select datediff(quarter, 开始日期,结束日期); --两日期间隔季select datedi ...
- 【Spring】—— 自动装配
一.Spring中装配bean的方式 1.在XML中显式配置 2.在Java中进行显式配置 3.隐士的bean发现机制和自动装配 二.自动装配示例 1.在需要装配到其他bean中的类中加入@Compo ...
- jdk1.8 HashMap的扩容resize()方法详解
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target ...
- Django-website 程序案例系列-10 cookie 和 session的应用
cookie: 现在所有网站基本都要开启cookie 客户端浏览器上的一个文件 例如: {‘key’: 'sefwefqefwefw'} 是一个键值对 简单实现cookie认证: user_in ...
- AGC005F Many Easy Problems(NTT)
先只考虑求某个f(k).考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数.再考虑转换为计算每条边不被包含的方案数.这仅当所选点都在该边的同一侧.于是可得f(k)=C(n,k)+ΣC(n,k ...
- 第八届蓝桥杯国赛java B组第三题
标题:树形显示 对于分类结构可以用树形来形象地表示.比如:文件系统就是典型的例子. 树中的结点具有父子关系.我们在显示的时候,把子项向右缩进(用空格,不是tab),并添加必要的连接线,以使其层次关系更 ...