BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏
首先我们建出Trie图,然后高斯消元。
我们设\(f_i\)表示经过第\(i\)个点的期望次数:
\]
\(p_x(i)\)表示经过第\(x\)个点\(i\)次的概率。我们设表示一个单词的节点为关键节点,则所有关键节点只会经过一次,也就是说\(f_{关键}=p_{关键}(1)\),也就是我们要求的答案。
\]
特别地\(\displaystyle f_1=\sum_{y与1相连}rate_{y\Rightarrow 1}f_y+1\),因为初始点在\(1\)。
\(rate_{y\Rightarrow x}\)就是能从\(y\)走到\(x\)的字母的出现概率。
根据这些等式列方程,再高斯消元就行了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 12
#define eps 1e-7
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,l,m;
double rate[26];
double w[N*N][N*N];
char str[N];
namespace AC_automation {
int cnt=1;
int id[N];
struct trie {
int ch[26];
int w,fail;
}tr[N*N];
void Insert(char *s,int No) {
int len=strlen(s+1),now=1;
for(int i=1;i<=len;i++) {
int j=s[i]-'A';
if(!tr[now].ch[j]) tr[now].ch[j]=++cnt;
now=tr[now].ch[j];
}
id[No]=now;
tr[now].w=1;
}
queue<int>q;
void build_fail() {
q.push(1);
while(!q.empty()) {
int v=q.front();
q.pop();
for(int i=0;i<26;i++) {
if(!tr[v].ch[i]) continue ;
int sn=tr[v].ch[i],f=tr[v].fail;
while(f&&!tr[f].ch[i]) f=tr[f].fail;
if(!f) tr[sn].fail=1;
else tr[sn].fail=tr[f].ch[i];
q.push(sn);
}
}
}
int find_sn(int now,int j) {
while(now&&!tr[now].ch[j]) now=tr[now].fail;
return now?tr[now].ch[j]:1;
}
void build_matrix() {
for(int i=1;i<=cnt;i++) {
w[i][i]=-1;
if(tr[i].w) continue ;
else {
for(int j=0;j<m;j++) {
int sn=find_sn(i,j);
w[sn][i]+=rate[j];
}
}
}
w[1][cnt+1]=-1;
}
}
int sum;
double ans[N*N];
void Gauss(int n) {
for(int i=1;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
if(fabs(w[i][i])<fabs(w[j][i])) swap(w[i],w[j]);
if(fabs(w[i][i])<eps) continue ;
for(int j=i+1;j<=n;j++) {
double tem=w[j][i]/w[i][i];
for(int k=i;k<=n+1;k++) w[j][k]-=tem*w[i][k];
}
}
}
for(int i=n;i>=1;i--) {
if(fabs(w[i][i])<eps) {ans[i]=0;continue ;}
for(int j=i+1;j<=n;j++) w[i][n+1]-=w[i][j]*ans[j];
ans[i]=w[i][n+1]/w[i][i];
}
}
int main() {
n=Get(),l=Get(),m=Get();
double a,b;
for(int i=0;i<m;i++) {
a=Get(),b=Get();
rate[i]=a/b;
}
for(int i=1;i<=n;i++) {
scanf("%s",str+1);
AC_automation::Insert(str,i);
}
AC_automation::build_fail();
AC_automation::build_matrix();
sum=AC_automation::cnt;
Gauss(sum);
for(int i=1;i<=n;i++) {
double a=ans[AC_automation::id[i]];
if(fabs(a)>0.005) cout<<fixed<<setprecision(2)<<a<<"\n";
else cout<<"0.00"<<"\n";
}
return 0;
}
BZOJ 1444:[JSOI2009]有趣的游戏的更多相关文章
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...
- BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)
1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1382 Solved: 498[Submit][Statu ...
- ●BZOJ 1444 [Jsoi2009]有趣的游戏
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1444题解.1: 概率dp,矩阵乘法,快速幂. 对所有串建立AC自动机, 那么如果在trie树 ...
- bzoj 1444: [Jsoi2009]有趣的游戏【AC自动机+dp+高斯消元】
https://blog.sengxian.com/solutions/bzoj-1444 orz 一直是我想错了,建出AC自动机之后,实际上这个定义是设f[i]为经过i节点的 * 期望次数 * ,因 ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (Trie图/AC自动机+矩阵求逆)
题目大意:给你$N$个长度相等且互不相同的模式串,现在有一个字符串生成器会不断生成字符,其中每个字符出现的概率是$p_{i}/q_{i}$,当生成器生成的字符串包含了某个模式串,则拥有该模式串的玩家胜 ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法
这道题还比较友好~首先,构建出来 $AC$ 自动机,那么我们要求的就是从 $0$ 号点走无限次走到一个终止节点的概率. 考虑构建转移矩阵 $M,$ $M_{i,j}$ 表示节点 $i$ 转移到节点 $ ...
- 1444: [Jsoi2009]有趣的游戏
1444: [Jsoi2009]有趣的游戏 链接 分析: 如果一个点回到0号点,那么会使0号点的概率增加,而0号点的概率本来是1,不能增加,所以这题用期望做. 设$x_i$表示经过i的期望次数,然后初 ...
随机推荐
- 一个mui扩展插件mui.showLoading加载框【转】
转:http://ask.dcloud.net.cn/article/12856 写在前面:好像mui目前dialog系列唯独缺少showLoading加载框(加载中)组件,为了统一组件样式和体验,写 ...
- ASP.NET新增数据返回自增ID
一.情景引入 项目需求:对于一个数据表(表A)的增.删.改全部要有日志记录,日志表(表B)结构 中需要记录表A的自增ID,这样才能将日志与操作的数据一一对应起来. 对于删和改都好办,获取Model时都 ...
- 【Dubbo&&Zookeeper】4、 Java实现Dubbo服务提供者及消费者注册
转自:http://blog.csdn.net/u010317829/article/details/52128852 创建Mavn工程.HelloDubbo. pom.xml添加dubbo及spri ...
- Java使用foreach语句对数组成员遍历输出
/** * 本程序使用foreach语句对数组成员进行遍历输出 * @author Lei * @version 2018-7-23 */ public class ForeachDemo { pub ...
- IDEA maven 项目如何上传到私服仓库
前言:idea maven 发布版本到私服(快照和正式版).我有个项目( jar 包源码),其他 maven 项目能直接引入依赖就最好了,所以必须将这个 jar 包源码发布到 maven 私服仓库里去 ...
- JavaScript中的window对象的属性和方法;JavaScript中如何选取文档元素
一.window对象的属性和方法 ①setTimeout()方法用来实现一个函数在指定毫秒之后运行,该方法返回一个值,这个值可以传递给clearTimeout()用于取消这个函数的执行. ②setIn ...
- canvas-arc.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 《.NET之美》之程序集
一.什么是程序集(Assembly)? 经由编译器编译得到的,供CLR进一步编译执行的那个中间产物,在WINDOWS系统中,它一般表现为·dll或者是·exe的格式,但是要注意,它们跟普通意义上的WI ...
- SPOJ GSS3 (动态dp)
题意 题目链接 Sol 这题可以动态dp做. 设\(f[i]\)表示以\(i\)为结尾的最大子段和,\(g[i]\)表示\(1-i\)的最大子段和 那么 \(f[i] = max(f[i - 1] + ...
- CloudSim源代码学习——云数据中心(Datacenter)
package org.cloudbus.cloudsim; import java.text.DecimalFormat;//十进制 import java.util.ArrayList; impo ...