前言

在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记

参考:刘建平老师博客 https://www.cnblogs.com/pinard/p/6251584.html

奇异值分解(SVD)原理与在降维中的应用

回顾特征值和特征向量

考研学习线代到最后的内容,也是考研的难点就是求一个矩阵特征值,特征向量,以及求正定矩阵,标准正交化。

但是因为要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?

答案是可以,此时我们的SVD登场了。

SVD的定义

简单来说,假设我们的矩阵A是一个m×n的矩阵,A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,

这样我们就可以得到矩阵ATA的n个特征值和对应的n个特征向量v了。将ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AAT是方阵,那么我们就可以进行特征分解,

这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了

我们注意到:

A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,这样也就是说,我们可以不用σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。

SVD的一些性质

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

就是说一个大的矩阵A可以用三个小的矩阵表示

SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

【疑难杂症】奇异值分解(SVD)原理与在降维中的应用的更多相关文章

  1. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  2. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  3. 奇异值分解(SVD)与在降维中的应用

    奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器 ...

  4. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  6. 奇异值分解(SVD)原理详解及推导

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...

  7. 机器学习之-奇异值分解(SVD)原理详解及推导

    转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...

  8. 【转】奇异值分解(SVD)原理详解及推导

    原文地址:https://blog.csdn.net/zhongkejingwang/article/details/43053513,转载主要方便随时查阅,如有版权要求,请及时联系. 在网上看到有很 ...

  9. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

随机推荐

  1. 019(The XOR Largest Pair)(字典树)

    题目:http://ybt.ssoier.cn:8088/problem_show.php?pid=1472 题目思路:异或是啥呀? 异或就是把两个数字变成位数相同的二进制在同位比较,相同为0,不同为 ...

  2. vue 项目知识

    Vue使用 Vue 源码解析 Vue SSR 如何调试Vue 源码 如何学习开源框架---> 从它的第一次commit 开始看 国外的文章 大致了解写框架的过程(英文关键字) 找到关键---&g ...

  3. Scanner的使用步骤和匿名对象的说明

    Scanner使用步骤 查看类 ~java.util.Scanner :该类需要import导入后使用. 查看构造方法 ~public Scanner(InputStream source) : 构造 ...

  4. Java中修饰符的分类及用法

    访问权限修饰符: public 修饰class,方法,变量: 所修饰类的名字必须与文件名相同,文件中最多能有一个pulic修饰的类. private class不可用,方法,变量可以用: 只限于本类成 ...

  5. 弹性布局( display: flex;)

    参考: https://www.cnblogs.com/hellocd/p/10443237.html

  6. 匿名对象和private关键字

    匿名内部类 没有名次的对象我们成为匿名对象 new Dog(); new Demo02().change(new Student("...")); 匿名对象的特点 如果对象只会被使 ...

  7. SpringBoot定时任务 - 经典定时任务设计:时间轮(Timing Wheel)案例和原理

    Timer和ScheduledExecutorService是JDK内置的定时任务方案,而业内还有一个经典的定时任务的设计叫时间轮(Timing Wheel), Netty内部基于时间轮实现了一个Ha ...

  8. 【web自动化测试】playwright安装失败怎么办

    在安装中,如果没有输入 playwright install, 则不会安装浏览器,运行 playwright codegen 时会报浏览器找不到的错误: "chromium" br ...

  9. 巧用Prometheus来扩展kubernetes调度器

    Overview 本文将深入讲解 如何扩展 Kubernetes scheduler 中各个扩展点如何使用,与扩展scheduler的原理,这些是作为扩展 scheduler 的所需的知识点.最后会完 ...

  10. 企业运维实践-Nginx使用geoip2模块并利用MaxMind的GeoIP2数据库实现处理不同国家或城市的访问最佳实践指南

    关注「WeiyiGeek」公众号 设为「特别关注」每天带你玩转网络安全运维.应用开发.物联网IOT学习! 希望各位看友[关注.点赞.评论.收藏.投币],助力每一个梦想. 本章目录 目录 0x00 前言 ...