前言

在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记

参考:刘建平老师博客 https://www.cnblogs.com/pinard/p/6251584.html

奇异值分解(SVD)原理与在降维中的应用

回顾特征值和特征向量

考研学习线代到最后的内容,也是考研的难点就是求一个矩阵特征值,特征向量,以及求正定矩阵,标准正交化。

但是因为要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?

答案是可以,此时我们的SVD登场了。

SVD的定义

简单来说,假设我们的矩阵A是一个m×n的矩阵,A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,

这样我们就可以得到矩阵ATA的n个特征值和对应的n个特征向量v了。将ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AAT是方阵,那么我们就可以进行特征分解,

这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了

我们注意到:

A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,这样也就是说,我们可以不用σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。

SVD的一些性质

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

就是说一个大的矩阵A可以用三个小的矩阵表示

SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

【疑难杂症】奇异值分解(SVD)原理与在降维中的应用的更多相关文章

  1. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  2. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  3. 奇异值分解(SVD)与在降维中的应用

    奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器 ...

  4. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  6. 奇异值分解(SVD)原理详解及推导

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...

  7. 机器学习之-奇异值分解(SVD)原理详解及推导

    转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...

  8. 【转】奇异值分解(SVD)原理详解及推导

    原文地址:https://blog.csdn.net/zhongkejingwang/article/details/43053513,转载主要方便随时查阅,如有版权要求,请及时联系. 在网上看到有很 ...

  9. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

随机推荐

  1. 《吐血整理》保姆级系列教程-玩转Fiddler抓包教程(2)-初识Fiddler让你理性认识一下

    1.前言 今天的理性认识主要就是讲解和分享Fiddler的一些理论基础知识.其实这部分也没有什么,主要是给小伙伴或者童鞋们讲一些实际工作中的场景,然后隆重推出我们的猪脚(主角)-Fiddler. 1. ...

  2. Tomcat深入浅出(一)

    一.Tomcat简介 我们下载好Tomcat后需要配置一下Java环境:如果打开出现闪退得情况,首先是jdk 同时配置JRE_HOME Tomcat的一些关键目录: /bin:存放用于启动及关闭的文件 ...

  3. 'cross-env' 不是内部或外部命令

    yarn start yarn run v1.22.10$ cross-env APP_TYPE=site umi dev'cross-env' 不是内部或外部命令,也不是可运行的程序或批处理文件.e ...

  4. day02 Java_变量

    参考: 变量的练习: 声明一个变量,一次声明多个变量. 声明变量直接初始化,先声明变量,而后再给变量初始化. 声明整型变量g,声明另一个整型变量h并赋值为h+10,输出变量h的值. 声明整型变量i,在 ...

  5. Docker容器保姆:在centos7.6上利用docker-compose统一管理容器和服务

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_108 众所周知,一个大型的Docker容器组成的微服务应用中,容器的数量是非常巨大的,如果依赖传统的人工配置方式进行维护,对于开发 ...

  6. 将Nginx配置成系统开机启动服务

    # 如何将nginx配置成我们的系统服务 # 1.在/usr/lib/systemd/system目录下面配置nginx.service内容 # 如果想要详细了解制作的过程:https://blog. ...

  7. Java学习(一)MarkDown语法

    Java学习(一)MarkDown语法 一.标题语法 一级标题 一级标题前添加一个#号 二级标题 二级标题前添加两个#号 三级标题 三级标题前添加三个#号 ... 二.字体 1.粗体 hello wo ...

  8. 1. MGR简介 | 深入浅出MGR

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 1. 为什么是MGR MGR是MySQL Group Replication的缩写,即MySQL组复制. 在以往,我们一般 ...

  9. MySQL:关于MGR中监控的两个重要指标简析

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 转载声明:以下文章来源于MySQL学习 ,作者八怪(高鹏) 一.两个重要的指标 ...

  10. MultiJittered采样类定义和测试

    多重抖动在书上说的是水平和竖直方面随机交换. 类声明: #pragma once #ifndef __MULTIJITTERED_HEADER__ #define __MULTIJITTERED_HE ...