前言

在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记

参考:刘建平老师博客 https://www.cnblogs.com/pinard/p/6251584.html

奇异值分解(SVD)原理与在降维中的应用

回顾特征值和特征向量

考研学习线代到最后的内容,也是考研的难点就是求一个矩阵特征值,特征向量,以及求正定矩阵,标准正交化。

但是因为要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?

答案是可以,此时我们的SVD登场了。

SVD的定义

简单来说,假设我们的矩阵A是一个m×n的矩阵,A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,

这样我们就可以得到矩阵ATA的n个特征值和对应的n个特征向量v了。将ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AAT是方阵,那么我们就可以进行特征分解,

这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了

我们注意到:

A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,这样也就是说,我们可以不用σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。

SVD的一些性质

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

就是说一个大的矩阵A可以用三个小的矩阵表示

SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

【疑难杂症】奇异值分解(SVD)原理与在降维中的应用的更多相关文章

  1. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  2. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  3. 奇异值分解(SVD)与在降维中的应用

    奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器 ...

  4. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  6. 奇异值分解(SVD)原理详解及推导

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...

  7. 机器学习之-奇异值分解(SVD)原理详解及推导

    转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...

  8. 【转】奇异值分解(SVD)原理详解及推导

    原文地址:https://blog.csdn.net/zhongkejingwang/article/details/43053513,转载主要方便随时查阅,如有版权要求,请及时联系. 在网上看到有很 ...

  9. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

随机推荐

  1. Eclipse拷贝动态的web工程

    1.选中需要拷贝的工程,CTRL+C,然后CTRL+V 2.在web动态工程中,还需要选中新拷贝工程,右键选中properties,然后搜索web,--->Web Project Setttin ...

  2. centos7 netstat command not found

    只需要执行: yum install net-tools 就ok.

  3. 图论学习笔记·$Floyd$ $Warshall$

    对于图论--虽然本蒟蒻也才入门--于是有了这篇学习笔记\(qwq\) 一般我们对于最短路的处理,本蒟蒻之前都是通过构建二维数组的方式然后对每两个点进行1次深度或者广度优先搜索,即一共进行\(n\)^2 ...

  4. 串口应用:遵循uart协议发送N位数据(状态优化为3个,适用任意长度的输入数据,取寄存器中的一段(用变量作为边界))

    上一节中成功实现了发送多个字节的数据.把需要发送的数据分成多段遵循uart协议的数据依次发送.上一节是使用状态机实现的,每发一次设定为一个状态,所以需要发送的数据越多,状态的个数越多,代码越长,因而冗 ...

  5. 循环队列(严3.30)--------西工大NOJ习题.9

    #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> typedef struct _Q ...

  6. javascript引用奇趣

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  7. Postgres常用SQL

  8. Python基础之list和tuple的使用

    list和tuple的使用 list Python内置的一种数据类型列表:list list是一种有序的集合,可以随身添加和删除其中的元素. 比如列出办理所有同学的名字,就可以用一个list表示: & ...

  9. Apache 首次亚洲在线峰会: Workflow & 数据治理专场

    背景 大数据发展到今天已有 10 年时间,早已渗透到各个行业,数据需 求越来越多,这使得大数据 业务间的依赖关系也越来越复杂,另外也相信做数据的伙伴肯定对如何治理数据也是痛苦之至,再加上现今云原生时代 ...

  10. Luogu3177 [HAOI2015]树上染色 (树形DP)

    考场上打出来个\(2^n n^2 \log (n)\),还文件错误RE了... 其实这不就是个变了一点点的树形背包,状态是节点\(u\)子树的\(贡献\). //#include <iostre ...