【疑难杂症】奇异值分解(SVD)原理与在降维中的应用
前言
在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记
参考:刘建平老师博客 https://www.cnblogs.com/pinard/p/6251584.html
奇异值分解(SVD)原理与在降维中的应用
回顾特征值和特征向量
考研学习线代到最后的内容,也是考研的难点就是求一个矩阵特征值,特征向量,以及求正定矩阵,标准正交化。
但是因为要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?
答案是可以,此时我们的SVD登场了。
SVD的定义
简单来说,假设我们的矩阵A是一个m×n的矩阵,A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,
这样我们就可以得到矩阵ATA的n个特征值和对应的n个特征向量v了。将ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量
如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AAT是方阵,那么我们就可以进行特征分解,
这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量
U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了
我们注意到:
A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui
这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。
进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,这样也就是说,我们可以不用σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。
SVD的一些性质
对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。
就是说一个大的矩阵A可以用三个小的矩阵表示
SVD小结
SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。
【疑难杂症】奇异值分解(SVD)原理与在降维中的应用的更多相关文章
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 奇异值分解(SVD)与在降维中的应用
奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器 ...
- 奇异值分解(SVD)原理详解及推导(转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 奇异值分解(SVD)原理详解及推导
在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...
- 机器学习之-奇异值分解(SVD)原理详解及推导
转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...
- 【转】奇异值分解(SVD)原理详解及推导
原文地址:https://blog.csdn.net/zhongkejingwang/article/details/43053513,转载主要方便随时查阅,如有版权要求,请及时联系. 在网上看到有很 ...
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
随机推荐
- Cf #782 (Div. 2)
A. Red Versus Blue 题意 共有 n 个连续字符 ,其中有 a 个 R ,b 个 B (a+b=n),问怎么排列使 R 的最大连续个数最小,输出一种可能排列 思路 b 个B可以把a个 ...
- P2575 高手过招 题解
题目描述 我们考虑如何把问题转换成博弈论来求解. 我们对于每一行之前都加上一个空格. 设原来这一行的空格个数是 \(C\) ,那么此时空格个数变成 \(C + 1\) . 然后按照从左到右的顺序给每一 ...
- Tapdata 与星环 KunDB 完成产品兼容互认证
近日, Tapdata 实时数据即服务平台(Tapdata Real Time DaaS)与星环 KunDB 完成产品兼容互认证.经深圳钛铂数据有限公司和星环信息科技(上海)股份有限公司共同严格测 ...
- 【ASP.NET Core】自定义的配置源
本文的主题是简单说说如何实现 IConfigurationSource.IConfigurationProvider 接口来自定义一个配置信息的来源,后面老周给的示例是实现用 CSV 文件进行应用配置 ...
- 集合-List接口常用实现类的对比
1.collection接口:单列集合,用来存储一个一个的对象 2. list接口:存储有序的.可重复的数据. --->"动态数组",替换原有的数组 (1) Arraylis ...
- 通过jmeter压测surging
前言 surging是异构微服务引擎,提供了模块化RPC请求通道,引擎在RPC服务治理基础之上还提供了各种协议,并且还提供了stage组件,以便针对于网关的访问, 相对于功能,可能大家更想知道能承受多 ...
- H5移动端实现一键复制或长摁复制
今天接到了一个新的需求,要求我们对表单中的某一个字段进行复制,这个表单是不可选的,拿到需求的时候有点懵,不清楚下手点在哪,后来网上找了找,终于有了点眉目,感觉网上有些是实现不了的,特地在这里记录下进行 ...
- B+树索引页大小是如何确定的?
B+树简介 在正式介绍本文的主题前,需要对 B+ 树有一定的了解,B+树是一种磁盘上数据的索引结构,大概长这个样子. B+树的叶子节点是所有的数据,非叶子节点称为索引页,索引页里有若干个索引项,本例中 ...
- ASP.NET Core 6框架揭秘实例演示[31]:路由“高阶”用法
ASP.NET的路由是通过EndpointRoutingMiddleware和EndpointMiddleware这两个中间件协作完成的,它们在ASP.NET平台上具有举足轻重的地位,MVC和gRPC ...
- 【Java面试】生产环境服务器变慢,如何诊断处理?
"生产环境服务器变慢?如何诊断处理" 这是最近一些工作5年以上的粉丝反馈给我的问题,他们去一线大厂面试,都被问到了这一类的问题. 今天给大家分享一下,面试过程中遇到这个问题,我们应 ...