现象

线上某个服务有接口非常慢,通过监控链路查看发现,中间的 GAP 时间非常大,实际接口并没有消耗很多时间,并且在那段时间里有很多这样的请求。

原因分析

先从监控链路分析了一波,发现请求是已经打到服务上了,处理之前不知道为什么等了 3s,猜测是不是机器当时负载太大了,通过 QPS 监控查看发现,在接口慢的时候 CPU 突然增高,同时也频繁的 GC ,并且时间很长,但是请求量并不大,并且这台机器很快就因为 Heap满了而被下掉了。

去看了下日志,果然有 OOM 的报错,但是从报错信息上并没办法找到 Root Cause。

system error: org.springframework.web.util.NestedServletException: Handler dispatch failed; nested exception is java.lang.OutOfMemoryError: Java heap space   at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:1055)   at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:943)   at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:1006)   at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:909)   at javax.servlet.http.HttpServlet.service(HttpServlet.java:681)

另外开发同学提供了线索,在发生问题的时候在跑一个大批量的一次性 JOB,怀疑是不是这个 JOB 导致的,马上把 JOB 代码拉下来分析了下,JOB 做了分批处理,代码也没有发现什么问题。

虽然我们系统加了下面的 JVM 参数,但是由于容器部署的原因,这些文件在 pod 被 kill 掉之后没办法保留下来。

-XX:+HeapDumpOnOutOfMemoryError -XX:ErrorFile=/logs/oom_dump/xxx.log -XX:HeapDumpPath=/logs/oom_dump/xxx.hprof

这个现象是最近出现的,猜测是最近提交的代码导致的,于是去分析了最近提交的所有代码,很不幸的都没有发现问题。。。

在分析代码的过程中,该服务又无规律的出现了两次 OOM,只好联系运维同学优先给这个服务加了 EFS (Amazon 文件系统)等待下次出现能抓住这个问题。

刚挂载完 EFS,很幸运的就碰到了系统出现 OOM 的问题。

dump 出来的文件足有 4.8G,话不多说祭出 jvisualvm 进行分析,分析工具都被这个dump文件给搞挂了也报了个java.lang.OutOfMemoryError: Java heap space,加载成功之后就给出了导致OOM的线程。

找到了具体报错的代码行号,翻一下业务代码,竟然是一个查询数据库的count操作,这能有啥问题?

仔细看了下里面有个foreach遍历userId的操作,难道这个userId的数组非常大?

找到class按照大小排序,占用最多的是一个 byte 数组,有 1.07G,char 数组也有1.03G,byte 数组都是数字,直接查看 char 数组吧,点进去查看具体内容,果然是那条count语句,一条 SQL 1.03G 难以想象。。。

这个userId的数据完全是外部传过来的,并没有做什么操作,从监控上看,这个入参有 64M,马上联系对应系统排查为啥会传这么多用户过来查询,经过一番排查确认他们有个bug,会把所有用户都发过来查询。。。到此问题排查清楚。

解决方案

对方系统控制传入userId的数量,我们自己的系统也对userId做一个限制,问题排查过程比较困难,修改方案总是那么的简单。

别急,还有一个

看到这个问题,就想起之前我们还有一个同样类似的问题导致的故障。

也是突然收到很多告警,还有机器 down 机的告警,打开 CAT 监控看的时候,发现内存已经被打满了。

操作和上面的是一样的,拿到 dump 文件之后进行分析,不过这是一个漫长的过程,因为 down了好几台机器,最大的文件有12GB。

通过 MAT 分析 dump 文件发现有几个巨大的 String(熟悉的味道,熟悉的配方)。

接下来就是早具体的代码位置了,去查看了下日志,这台机器已经触发自我保护机制了,把代码的具体位置带了出来。

经过分析代码发现,代码中的逻辑是查询 TIDB(是有同步延迟的),发现在极端情况下会出现将用户表全部数据加载到内存中的现象。

于是找 DBA 拉取了对应时间段 TIDB 的慢查询,果然命中了。

总结

面对 OOM 问题如果代码不是有明显的问题,下面几个JVM参数相当有用,尤其是在容器化之后。

-XX:+HeapDumpOnOutOfMemoryError -XX:ErrorFile=/logs/oom_dump/xxx.log -XX:HeapDumpPath=/logs/oom_dump/xxx.hprof

另外提一个参数也很有用,正常来说如果程序出现 OOM 之后,就是有代码存在内存泄漏的风险,这个时候即使能对外提供服务,其实也是有风险的,可能造成更多的请求有问题,所以该参数非常有必要,可以让 K8S 快速的再拉起来一个实例。

-XX:+ExitOnOutOfMemoryError

另外,针对这两个非常类似的问题,对于 SQL 语句,如果监测到没有where条件的全表查询应该默认增加一个合适的limit作为限制,防止这种问题拖垮整个系统。

一次线上OOM问题分析的更多相关文章

  1. 记一次线上OOM问题分析与解决

    一.问题情况 最近用户反映系统响应越来越慢,而且不是偶发性的慢.根据后台日志,可以看到系统已经有oom现象. 根据jdk自带的jconsole工具,可以监视到系统处于堵塞时期.cup占满,活动线程数持 ...

  2. 一次线上OOM故障排查经过

    转贴:http://my.oschina.net/flashsword/blog/205266 本文是一次线上OOM故障排查的经过,内容比较基础但是真实,主要是记录一下,没有OOM排查经验的同学也可以 ...

  3. 【转】又一次线上 OOM 排查经过

    又一次线上OOM排查经过 最近线上一个服务又出现了频繁Full GC的情况,导致提供的业务经常超时.问题出现非常不稳定,经过两周的时候,终于又捕捉到了一次Full GC,于是联系运维做Heap Dum ...

  4. 火山引擎MARS-APM Plus x 飞书 |降低线上OOM,提高App性能稳定性

    通过使用火山引擎MARS-APM Plus的memory graph功能,飞书研发团队有效分析定位问题线上case多达30例,线上OOM率降低到了0.8‰,降幅达到60%.大幅提升了用户体验,为飞书的 ...

  5. 记一次log4j日志导致线上OOM问题案例

    最近一个服务突然出现 OutOfMemoryError,两台服务因为这个原因挂掉了,一直在full gc.还因为这个问题我们小组吃了一个线上故障.很是纳闷,一直运行的好好的,怎么突然就不行了呢... ...

  6. 记一次ArrayList产生的线上OOM问题

    前言:本以为(OutOfMemoryError)OOM问题会离我们很远,但在一次生产上线灰度的过程中就出现了Java.Lang.OutOfMemoryError:Java heap space异常,通 ...

  7. 记一次线上 OOM 和性能优化

    大家好,我是鸭血粉丝(大家会亲切的喊我 「阿粉」),是一位喜欢吃鸭血粉丝的程序员,回想起之前线上出现 OOM 的场景,毕竟当时是第一次遇到这么 紧脏 的大事,要好好记录下来. 1 事情回顾 在某次周五 ...

  8. 记一次 android 线上 oom 问题

    背景 公司的主打产品是一款跨平台的 App,我的部门负责为它提供底层的 sdk 用于数据传输,我负责的是 Adnroid 端的 sdk 开发. sdk 并不直接加载在 App 主进程,而是隔离在一个单 ...

  9. 【jvm】来自于线上的fullGC分析

    系统最近老年代的内存上升的比较快,三到四天会发生一波fullGC.于是开始对GC的情况做一波分析. 线上老年代2.7G,年轻带1.3G老年代上升较快,3天一波fullGC,并且fullGC会把内存回收 ...

  10. 一次线上OOM过程的排查

    https://blog.csdn.net/qq_16681169/article/details/53296137 一.出现问题 在前一段时间日常环境很不稳定,前端调用mtop接口会出网络异常或服务 ...

随机推荐

  1. linux系统中安装虚拟机

    在linux系统中,利用图形化界面安装虚拟机.首先启动 virt-manager,当然没有安装 virt-manager需要先安装好. 1 $ apt-get install virt-manager ...

  2. 网络监测工具之Zabbix的搭建与测试方法(二)-- SNMP、OID和MIB概述

    概念 SNMP是专门设计用于在 IP 网络管理网络节点的一种标准协议,它是一种应用层协议.SNMP使网络管理员能够管理网络效能,发现并解决网络问题以及规划网络增长.通过SNMP接收随机消息(及事件报告 ...

  3. 【转载】【WinAPI】LockWindowUpdate的函数的用法

    DelPhi LockWindowUpdate的函数的用法 Application.ProcessMessages; LockWindowUpdate(Self.Handle); //锁住当前窗口 L ...

  4. 2020强网杯青少赛Pursuing_The_Wind战队WRITEUP

    在线文档:https://docs.qq.com/doc/DZkN0RFFaR1ZDdHhD    旧事拾荒,偶遇该文档,既发. 战队信息 战队名称:Pursuing_The_Wind 战队排名:12 ...

  5. [深度学习] imgaug边界框增强笔记

    imgaug边界框增强笔记主要是讲述基于imgaug库对目标检测图像的边界框进行图像增强.本文需要掌握imgaug库的基本使用,imgaug库的基本使用见[深度学习] imgaug库使用笔记. 文章目 ...

  6. Java学习笔记:2022年1月10日

    Java学习笔记:2022年1月10日 ​ 摘要:这篇笔记主要记录了学习<Java核心技术 卷一>的第四章时的一些心得,主要阐述了对象与类这一部分的内容.需要注意的是,这一章的内容需要精心 ...

  7. ORM执行原生SQL语句、双下划线数据查询、ORM外键字段的创建、外键字段的相关操作、ORM跨表查询、基于对象的跨表查询、基于双下划线的跨表查询、进阶查询操作

    今日内容 ORM执行SQL语句 有时候ROM的操作效率可能偏低 我们是可以自己编写sql的 方式1: models.User.objects.raw('select * from app01_user ...

  8. three.js一步一步来--如何画出构造辅助线

    可以参考下面代码,粘贴上去就有了~ <template> <div class="container"> <h1>初步构造出辅助线</h1 ...

  9. 使用pyenv对python进行版本控制—很好用

    相对于python自带的virtualenv来说,pyenv的使用要便利些,更不用说自带的插件python-virtualenv,创建虚拟环境就更为方便了,其实最让我心水的功能是创建的虚拟环境,进入设 ...

  10. python处理apiDoc转swagger

    python处理apiDoc转swagger 需要转换的接口 现在我需要转换的接口全是nodejs写的数据,而且均为post传输的json格式接口 apiDoc格式 apiDoc代码中的格式如下: / ...