题面

原题链接(CF1627D)

You have an array \(a_1,a_2,…,a_n\) consisting of \(n\) distinct integers. You are allowed to perform the following operation on it:

Choose two elements from the array \(a_i\) and \(a_j\) \((i≠j)\) such that \(gcd(a_i,a_j)\) is not present in the array, and add \(gcd(a_i,a_j)\) to the end of the array. Here \(gcd(x,y)\) denotes greatest common divisor (GCD) of integers \(x\) and \(y\).

Note that the array changes after each operation, and the subsequent operations are performed on the new array.

What is the maximum number of times you can perform the operation on the array?

Input

The first line consists of a single integer \(n\) \((2≤n≤10^6)\).

The second line consists of \(n\) integers \(a_1,a_2,…,a_n (1≤a_i≤10^6)\). All ai are distinct.

Output

Output a single line containing one integer — the maximum number of times the operation can be performed on the given array.

Examples

input

5
4 20 1 25 30

output

3

input

3
6 10 15

output

4

Note

In the first example, one of the ways to perform maximum number of operations on the array is:

Pick \(i=1,j=5\) and add \(gcd(a_1,a_5)=gcd(4,30)=2\) to the array.

Pick \(i=2,j=4\) and add \(gcd(a_2,a_4)=gcd(20,25)=5\) to the array.

Pick \(i=2,j=5\) and add \(gcd(a_2,a_5)=gcd(20,30)=10\) to the array.

It can be proved that there is no way to perform more than 3 operations on the original array.

In the second example one can add 3, then 1, then 5, and 2.

大意

给出一个整数的不可重集合,可以对其重复执行以下操作:对于集合内的任意两个数,计算它们的最大公约数(GCD),如果这个GCD不存在于原集合中,就把它加入这个集合。新加入的数也可以在之后的操作中参与计算。重复此操作,求最多能进行的操作次数。

题解

题面的数据达到了1e6,很显然不能枚举每一对数来检查。但是,集合内的元素大小也在1e6范围内,因此可以开一个大小1e6的数组记录这个数有没有出现过。同时GCD还有一个很有用的性质:两个数的GCD不大于两个数的最小值,也就是\(gcd(a_i,a_j) \leq \min (a_i,a_j)\)。所以,如果一个数能够被加入这个集合,它一定比原集合的最大元素还要小。所以我们考虑对答案进行枚举,从1到这个最大值的所有整数全部判断一遍。

怎么判断这个数能否被加入集合呢?首先,如果已经存在于集合中的数肯定不能被加入,因此可以跳过。然后,对于不在集合中的数\(i\),要想让它被加入集合中,必须存在两个数使其最大公约数为\(i\)。也就是说,集合中存在两个数\(a_p=pi,a_q=qi\),其中\(p,q\)互质。由此,我们可以考虑对每一个没有出现的数\(i\),检查所有的\(2i,3i,\dots ,ki \leq \max(a)\)是否出现在集合中。但是,判断互质是一件非常麻烦的事情。所以联想到GCD的另一个重要性质:三个数的GCD等于其中两个数的GCD和另外一个数的GCD,也就是说\(gcd(a_i,a_j,a_k)=gcd(gcd(a_i,a_j),a_k)\),这个性质对\(n\)个数也成立。假设对所有的\(ki\),有三个数\(k_1i,k_2i,k_3i\)出现在了集合中,其中\(k_n\)两两不互质,但是\(k_1,k_2,k_3\)互质,那么我们可以把\(k_4i=gcd(k_1i,k_2i)\)加入到集合中(如果它已经在集合中那么就不用理睬了),然后计算\(gcd(k_4i,k_3i)=i\),将其加入集合。对于\(n\)个元素也同理。据此,我们可以得出,对于任意一个未出现在集合内的数\(i\),它能加入集合的充要条件是集合内所有\(i\)的倍数的数的GCD等于\(i\)。

枚举每一个可能的\(i\),对每一个\(i\)作判断计算次数为\(\frac{n}{i}\),对此求和(调和级数)得到线性乘以对数的复杂度,求GCD的复杂度大约为对数级别,因此总体复杂度为\(O(n \log ^2 n)\)。

代码如下:

#include <bits/stdc++.h>
#define GRP \
int T; \
cin >> T; \
rep(C, 1, T)
#define FAST \
ios::sync_with_stdio(false); \
cin.tie(0);
using namespace std;
#define rep(i, a, b) for (int i = a; i <= b; ++i)
#define rrep(i, a, b) for (int i = a; i >= b; --i)
#define elif else if
#define mem(arr, val) memset(arr, val, sizeof(arr))
typedef long long ll;
typedef unsigned long long ull; int n;
int a[1000010];
bool vis[1000010];
int maxx, cnt, num;
int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
} int main()
{
FAST;
cin >> n;
mem(vis, 0);
cnt = 0;
cin >> a[1];
maxx = a[1];
vis[a[1]] = true;
rep(i, 2, n)
{
cin >> a[i];
maxx = max(maxx, a[i]);
vis[a[i]] = true;
}
rep(i, 1, maxx) //进行枚举
{
if (vis[i])
{
continue;
}
num = 0; //令一个数和0的GCD等于该数本身,可以简化代码
for (int j = i * 2; j <= maxx; j += i) //枚举所有的倍数
{
if (!vis[j])
{
continue;
}
num = gcd(num, j);
}
if (num == i)
{
cnt++;
}
}
cout << cnt << endl;
return 0;
}

Not Adding - 题解【数学,枚举】的更多相关文章

  1. 51nod 1943 联通期望 题解【枚举】【二进制】【概率期望】【DP】

    集合统计类期望题目. 题目描述 在一片大海上有 \(n\) 个岛屿,规划建设 \(m\) 座桥,第i座桥的成本为 \(z_i\),但由于海怪的存在,第 \(i\) 座桥有 \(p_i\) 的概率不能建 ...

  2. [题解]数学期望_luogu_P1850_换教室

    数学期望dp,题面第一次见很吓人,然而从CCF语翻译成人话就简单多了, 开始一般会想到用 f [ i ] [ j ]表示前 i 个课程申请 j 次的期望,然而其实会发现转移的时候还和上一次的情况有关( ...

  3. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  4. 2-08. 用扑克牌计算24点(25) (ZJU_PAT 数学 枚举)

    题目链接:http://pat.zju.edu.cn/contests/ds/2-08 一副扑克牌的每张牌表示一个数(J.Q.K分别表示11.12.13,两个司令都表示6).任取4张牌.即得到4个1~ ...

  5. The Golden Age CodeForces - 813B (数学+枚举)

    Unlucky year in Berland is such a year that its number n can be represented as n = xa + yb, where a  ...

  6. Codeforces 813B The Golden Age(数学+枚举)

    题目大意:如果一个数t=x^a+y^b(a,b都是大于等于0的整数)那就是一个unlucky数字.给你x,y,l,r(2 ≤ x, y ≤ 10^18, 1 ≤ l ≤ r ≤ 10^18),求出l到 ...

  7. FZU 2125 简单的等式 【数学/枚举解方程式】

    现在有一个等式如下:x^2+s(x,m)x-n=0.其中s(x,m)表示把x写成m进制时,每个位数相加的和.现在,在给定n,m的情况下,求出满足等式的最小的正整数x.如果不存在,请输出-1. Inpu ...

  8. 【数学+枚举】OpenJ_POJ - C17J Pairs

    https://vjudge.net/contest/171652#problem/J [题意] 问有多少个正整数对(x,y),使得存在正整数p,q满足 1 <= T <= 15 1 &l ...

  9. ZROI17普及23-A.如烟题解--技巧枚举

    题目链接 因版权原因不予提供 分析 别看这是普及模拟赛,其实基本上是提高难度...像这题做NOIpT1的话也说的过去 有个很显然的暴力思路就是枚举c,a,b,时间复杂度\(O(N^3)\), 然后正解 ...

随机推荐

  1. pytest配置文件pytest.ini

    说明: pytest.ini是pytest的全局配置文件,一般放在项目的根目录下 是一个固定的文件-pytest.ini 可以改变pytest的运行方式,设置配置信息,读取后按照配置的内容去运行 py ...

  2. 迷宫问题,打印所有路径,深度搜索,dfs

    #include<iostream> using namespace std; int maze [5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0 ...

  3. 去掉一个Vector集合中重复的元素 ?

    Vector newVector = new Vector(); For (int i=0;i<vector.size();i++) { Object obj = vector.get(i); ...

  4. 利用 ps 怎么显示所有的进程? 怎么利用 ps 查看指定进程的信息?

    ps -ef (system v 输出)ps -aux bsd 格式输出ps -ef | grep pid

  5. nginx反向代理失败,又是 fastdfs 的锅

    fdfs问题记录 [root@hostcad logs]# systemctl status fdfs_trackerd.service ● fdfs_trackerd.service - LSB: ...

  6. Delete、truncate、drop都是删除语句,它们有什么分别?

    delete 属于DML语句,删除数据,保留表结构,需要commit,可以回滚,如果数据量大,很慢. truncate 属于DDL语句,删除所有数据,保留表结构,自动commit,不可以回滚,一次全部 ...

  7. java-规约-OOP

    public class OOP { /** * 避免通过一个类的对象引用访问此类的静态变量或者静态方法 * 直接通过类名去访问 */ // 错误使用例子: public static void ma ...

  8. spring-boot-learning-REST风格网站

    什么是REST风格: Representational State Transfer :表现层状态转换,实际上是一种风格.标准,约定 首先需要有资源才能表现, 所以第一个名词是" 资源&qu ...

  9. memcached 与 redis 的区别?

    1.Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储.而 memcache 只支持简单数据类型,需要客户端自己处理复 杂对象 2.R ...

  10. spring 自动装配 bean 有哪些方式?

    Spring容器负责创建应用程序中的bean同时通过ID来协调这些对象之间的关系.作为开发人员,我们需要告诉Spring要创建哪些bean并且如何将其装配到一起. spring中bean装配有两种方式 ...