AOV网的实现(数据结构)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>//我这里的头以及尾巴与书上的不一样。
int max(int a, int b)
{
return a > b?a:b;
}
int min(int a, int b)
{
return a < b?a:b;
}
typedef struct ArcNode
{
int from, to;
struct ArcNode * fnext, *tonext;
int w;
}ArcNode;
typedef struct VertexNode
{
char info;
ArcNode *ff, *ft;
}VertexNode;
typedef struct Graph
{
int num_vertex;
int num_arc;
VertexNode *ver;
}Graph;
Graph *Create(int n)
{
Graph * G = (Graph*)malloc(sizeof(Graph));
G->num_vertex = n;
G->num_arc = 0;
G->ver = (VertexNode*)calloc(n+1, sizeof(VertexNode));
for(int i = 1; i <= n; i++)
{
G->ver[i].ff = NULL;
G->ver[i].ft = NULL;//在这里可以补加点的信息
}
return G;
}
void AddArc(Graph *G,int a, int b, int c)
{
(G->num_arc)++;
ArcNode *s = (ArcNode*)malloc(sizeof(ArcNode));
s->from = a;
s->to = b;
s->fnext = G->ver[a].ff;
G->ver[a].ff = s;
s->tonext = G->ver[b].ft;
G->ver[b].ft = s;
s->w = c;
}
//手写一个栈
typedef struct stack{
int *data;
int cnt;
int max;
}Stack;
Stack *Create_Stack(int max)
{
Stack *s = (Stack*)malloc(sizeof(Stack));
s->cnt = -1;
s->data = (int *)calloc(max, sizeof(int));
s->max = max;
return s;
}
void Pop_Stack(Stack *S)
{
if(S->cnt > -1)
S->cnt--;
}
void Push_Stack(Stack *S, int e)
{
if(S->cnt < S->max)
{
S->cnt++;
S->data[S->cnt] = e;
}
}
int Top_Stack(Stack *S)
{
if(S->cnt > -1)
{
return S->data[S->cnt];
}
return 0x3f3f3f3f;
}
void Destory_Stack(Stack *S)
{
free(S->data);
free(S);
}
int Empty_Stack(Stack *S)
{
if(S->cnt == -1)
return 1;
return 0;
}
//进行topo排序
int TopoSort(Graph *G, int *arr)
{
int total = 0;
Stack* s = Create_Stack(G->num_vertex+2);
int *in = (int *)calloc(G->num_vertex+1,sizeof(G));
for(int i = 1; i <= G->num_vertex; i++)
{
int cnt = 0;
for(ArcNode *A = G->ver[i].ft; A; A = A->tonext)
cnt++;
in[i] = cnt;
if(cnt == 0)
Push_Stack(s, i);
}
while(!Empty_Stack(s))
{
int t = Top_Stack(s);
arr[++total] = t;
Pop_Stack(s);
for(ArcNode *A = G->ver[t].ff; A; A = A->fnext)
{
in[A->to]--;
if(in[A->to]==0)
Push_Stack(s, A->to);
}
}
free(in);
Destory_Stack(s);
if(total != G->num_vertex)
return 1;
return 0;
}
void AOE(Graph *G)
{
int *topo = (int *)calloc(G->num_vertex+2, sizeof(int));
int *ve = (int *)calloc(G->num_vertex+1, sizeof(int));
int *vl = (int *)calloc(G->num_vertex+1, sizeof(int));
for(int i = 1; i <= G->num_vertex; i++)
{
ve[i] = 0;
vl[i] = 0x3f3f3f3f;
}
if(TopoSort(G, topo))
printf("该任务出现闭环!!!");
//计算ve
ve[1] = 0;
for(int i = 2; i <= G->num_vertex; i++)//注意是以2开始
{
for(ArcNode *A = G->ver[topo[i]].ft; A; A = A->tonext)
{
ve[topo[i]] = max(ve[topo[i]],ve[A->from]+A->w);
}
}
//计算vl
vl[G->num_vertex] = ve[G->num_vertex];
for(int i = G->num_vertex; i >= 1; i--)
{
for(ArcNode *A = G->ver[topo[i]].ft; A; A = A->tonext)
{
vl[A->from] = min(vl[A->from], vl[A->to]-A->w);
}
}
for(int i = 1; i <= G->num_vertex; i++)
{
for(ArcNode *A = G->ver[topo[i]].ff; A; A = A->fnext)
{
printf("%d ----> %d:\n",A->from, A->to);
printf("最早:%d\t最迟:%d\t",ve[A->from], vl[A->to]-A->w);
if(ve[A->from]==vl[A->to]-A->w)
printf("关键活动\n");
else
printf("非关键活动,松弛时间:%d\n",vl[A->to]-A->w-ve[A->from]);
}
}
free(topo);
free(ve);
free(vl);
}
int main()//要求:第一个序号代表源点, 最后一个(n号)代表汇点
{
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
int n,m;
scanf("%d",&n);
Graph *G = Create(n);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
int a,b,c;
scanf("%d%d%d",&a, &b, &c);
AddArc(G,a,b,c);
}
AOE(G);
return 0;
}
/*测试用例
9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2
*/
AOV网的实现(数据结构)的更多相关文章
- 算法与数据结构(八) AOV网的关键路径
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 算法与数据结构(八) AOV网的关键路径(Swift版)
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序(Swift版)
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- AOV网与拓扑排序
在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex Network).AOV网中的弧表示活动 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 慕课网:C++ & 数据结构
课程链接:james_yuan的课程 这部分太枯燥了,如果教材难度稍大,根本就学不下去,所以就先看看通俗的视频吧. 课程目录 1.C++远征之起航篇 - C++亮点尽在其中 2.C++远征之离港篇 - ...
- AOV网
1.定义 用顶点表示活动,用有向边<Vi, Vj>表示活动间的优先关系. Vi必须先于活动Vj进行. 这种有向图叫做顶点表示活动的AOV网络(Activity On Vertices) 2 ...
- AOE网与AOV网
因为有人无端怀疑此博客为抄袭, 且作者写作此博客时仅为应试之用,今毕业已久此文章已无用处 故删除文章,不想再无故受到打扰 祝好
随机推荐
- kubernetes源码学习-环境配置篇
下载源码 根据kubernetes github 方式可以 mkdir -p $GOPATH/src/k8s.io cd $GOPATH/src/k8s.io git clone https://gi ...
- 149_1秒获取Power BI Pro帐号
一.背景 当你来到这篇文章的时候,我想你已经在网上搜索了一圈了.网上有一大把教你如何注册Power BI帐号的方法,我们这里就不在赘述了.因为各种因素的限制确实比较麻烦.我们直接提供Power BI ...
- 13. L1,L2范数
讲的言简意赅,本人懒,顺手转载过来:https://www.cnblogs.com/lhfhaifeng/p/10671349.html
- Java-SpringBoot-使用多态给项目解耦
Java-SpringBoot-使用多态给项目解耦 提及 今天在打算维护一下智慧社区这个项目的时候,想到项目是使用Satoken这个开箱即用的授权和认证的组件,因为在项目开启的时候对SpringSec ...
- 如何实现Springboot+camunda+mysql的集成
本文介绍基于mysql数据库,如何实现camunda与springboot的集成,如何实现基于springboot运行camunda开源流程引擎. 一.创建springboot工程 使用IDEA工具, ...
- ExtJS 布局-Column布局(Column layout)
更新记录: 2022年6月1日 开始. 2022年6月4日 发布. 1.说明 使用列布局,可以将容器拆分为特定大小的列,并将子组件放置在这些列中. 可以设置子组件宽度值为: 百分比(相对父容器宽度) ...
- Visual Studio Installer下载速度为0处理办法
DNS改为:223.5.5.5即可. 223.5.5.5 下载完成后记得改回来.
- k8s client-go源码分析 informer源码分析(6)-Indexer源码分析
client-go之Indexer源码分析 1.Indexer概述 Indexer中有informer维护的指定资源对象的相对于etcd数据的一份本地内存缓存,可通过该缓存获取资源对象,以减少对api ...
- 对互斥事件和条件概率的相互理解《考研概率论学习之我见》 -by zobol
1.从条件概率来定义互斥和对立事件 2.互斥事件是独立事件吗? 3.每个样本点都可以看作是互斥事件,来重新看待条件概率 一.从条件概率来定义互斥和对立事件 根据古典概率-条件概率的定义,当在" ...
- 关于Vue在面试中常常被提到的几点(持续更新……)
1.Vue项目中为什么要在列表组件中写key,作用是什么? 我们在业务组件中,会经常使用循环列表,当时用v-for命令时,会在后面写上:key,那么为什么建议写呢? key的作用是更新组件时判断两个节 ...