AOV网的实现(数据结构)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>//我这里的头以及尾巴与书上的不一样。
int max(int a, int b)
{
return a > b?a:b;
}
int min(int a, int b)
{
return a < b?a:b;
}
typedef struct ArcNode
{
int from, to;
struct ArcNode * fnext, *tonext;
int w;
}ArcNode;
typedef struct VertexNode
{
char info;
ArcNode *ff, *ft;
}VertexNode;
typedef struct Graph
{
int num_vertex;
int num_arc;
VertexNode *ver;
}Graph;
Graph *Create(int n)
{
Graph * G = (Graph*)malloc(sizeof(Graph));
G->num_vertex = n;
G->num_arc = 0;
G->ver = (VertexNode*)calloc(n+1, sizeof(VertexNode));
for(int i = 1; i <= n; i++)
{
G->ver[i].ff = NULL;
G->ver[i].ft = NULL;//在这里可以补加点的信息
}
return G;
}
void AddArc(Graph *G,int a, int b, int c)
{
(G->num_arc)++;
ArcNode *s = (ArcNode*)malloc(sizeof(ArcNode));
s->from = a;
s->to = b;
s->fnext = G->ver[a].ff;
G->ver[a].ff = s;
s->tonext = G->ver[b].ft;
G->ver[b].ft = s;
s->w = c;
}
//手写一个栈
typedef struct stack{
int *data;
int cnt;
int max;
}Stack;
Stack *Create_Stack(int max)
{
Stack *s = (Stack*)malloc(sizeof(Stack));
s->cnt = -1;
s->data = (int *)calloc(max, sizeof(int));
s->max = max;
return s;
}
void Pop_Stack(Stack *S)
{
if(S->cnt > -1)
S->cnt--;
}
void Push_Stack(Stack *S, int e)
{
if(S->cnt < S->max)
{
S->cnt++;
S->data[S->cnt] = e;
}
}
int Top_Stack(Stack *S)
{
if(S->cnt > -1)
{
return S->data[S->cnt];
}
return 0x3f3f3f3f;
}
void Destory_Stack(Stack *S)
{
free(S->data);
free(S);
}
int Empty_Stack(Stack *S)
{
if(S->cnt == -1)
return 1;
return 0;
}
//进行topo排序
int TopoSort(Graph *G, int *arr)
{
int total = 0;
Stack* s = Create_Stack(G->num_vertex+2);
int *in = (int *)calloc(G->num_vertex+1,sizeof(G));
for(int i = 1; i <= G->num_vertex; i++)
{
int cnt = 0;
for(ArcNode *A = G->ver[i].ft; A; A = A->tonext)
cnt++;
in[i] = cnt;
if(cnt == 0)
Push_Stack(s, i);
}
while(!Empty_Stack(s))
{
int t = Top_Stack(s);
arr[++total] = t;
Pop_Stack(s);
for(ArcNode *A = G->ver[t].ff; A; A = A->fnext)
{
in[A->to]--;
if(in[A->to]==0)
Push_Stack(s, A->to);
}
}
free(in);
Destory_Stack(s);
if(total != G->num_vertex)
return 1;
return 0;
}
void AOE(Graph *G)
{
int *topo = (int *)calloc(G->num_vertex+2, sizeof(int));
int *ve = (int *)calloc(G->num_vertex+1, sizeof(int));
int *vl = (int *)calloc(G->num_vertex+1, sizeof(int));
for(int i = 1; i <= G->num_vertex; i++)
{
ve[i] = 0;
vl[i] = 0x3f3f3f3f;
}
if(TopoSort(G, topo))
printf("该任务出现闭环!!!");
//计算ve
ve[1] = 0;
for(int i = 2; i <= G->num_vertex; i++)//注意是以2开始
{
for(ArcNode *A = G->ver[topo[i]].ft; A; A = A->tonext)
{
ve[topo[i]] = max(ve[topo[i]],ve[A->from]+A->w);
}
}
//计算vl
vl[G->num_vertex] = ve[G->num_vertex];
for(int i = G->num_vertex; i >= 1; i--)
{
for(ArcNode *A = G->ver[topo[i]].ft; A; A = A->tonext)
{
vl[A->from] = min(vl[A->from], vl[A->to]-A->w);
}
}
for(int i = 1; i <= G->num_vertex; i++)
{
for(ArcNode *A = G->ver[topo[i]].ff; A; A = A->fnext)
{
printf("%d ----> %d:\n",A->from, A->to);
printf("最早:%d\t最迟:%d\t",ve[A->from], vl[A->to]-A->w);
if(ve[A->from]==vl[A->to]-A->w)
printf("关键活动\n");
else
printf("非关键活动,松弛时间:%d\n",vl[A->to]-A->w-ve[A->from]);
}
}
free(topo);
free(ve);
free(vl);
}
int main()//要求:第一个序号代表源点, 最后一个(n号)代表汇点
{
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
//要求:第一个序号代表源点, 最后一个(n号)代表汇点
int n,m;
scanf("%d",&n);
Graph *G = Create(n);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
int a,b,c;
scanf("%d%d%d",&a, &b, &c);
AddArc(G,a,b,c);
}
AOE(G);
return 0;
}
/*测试用例
9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2
*/
AOV网的实现(数据结构)的更多相关文章
- 算法与数据结构(八) AOV网的关键路径
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 算法与数据结构(八) AOV网的关键路径(Swift版)
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序(Swift版)
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- AOV网与拓扑排序
在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex Network).AOV网中的弧表示活动 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 慕课网:C++ & 数据结构
课程链接:james_yuan的课程 这部分太枯燥了,如果教材难度稍大,根本就学不下去,所以就先看看通俗的视频吧. 课程目录 1.C++远征之起航篇 - C++亮点尽在其中 2.C++远征之离港篇 - ...
- AOV网
1.定义 用顶点表示活动,用有向边<Vi, Vj>表示活动间的优先关系. Vi必须先于活动Vj进行. 这种有向图叫做顶点表示活动的AOV网络(Activity On Vertices) 2 ...
- AOE网与AOV网
因为有人无端怀疑此博客为抄袭, 且作者写作此博客时仅为应试之用,今毕业已久此文章已无用处 故删除文章,不想再无故受到打扰 祝好
随机推荐
- gol处理命令行参数 flag
os.Args获取命令行参数 os.Args是一个srting的切片,用来存储所有的命令行参数 package main import ( "fmt" "os" ...
- 【Python数据分析案例】python数据分析老番茄B站数据(pandas常用基础数据分析代码)
一.爬取老番茄B站数据 前几天开发了一个python爬虫脚本,成功爬取了B站李子柒的视频数据,共142个视频,17个字段,含: 视频标题,视频地址,视频上传时间,视频时长,是否合作视频,视频分区,弹幕 ...
- idea的快捷键(复制) IntelliJ Idea 常用快捷键列表
Ctrl+Shift + Enter,语句完成'!',否定完成,输入表达式时按 "!"键 Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Shift+Click,可 ...
- Nginx的mirror指令能干啥?
mirror 流量复制 Nginx的 mirror 指令来自于 ngx_http_mirror_module 模块 Nginx Version > 1.13.4 mirror 指令提供的核心功能 ...
- HAVING,多表查询思路,可视化软件navicat,多表查询练习题,
HAVING "where"是一个约束声明,在查询数据库的结果返回之前对数据库中的查询条件进行约束,即在结果返回之 前起作用,且"where"后面不能写&quo ...
- 04C++核心编程(二-泛型编程)
Day08 笔记 1 函数模板 1.1 泛型编程 – 模板技术 特点:类型参数化 1.2 template< typename T > 告诉编译器后面紧跟着的函数或者类中出现T,不要报错, ...
- Es图形化软件使用之ElasticSearch-head、Kibana,Elasticsearch之-倒排索引操作、映射管理、文档增删改查
今日内容概要 ElasticSearch之-ElasticSearch-head ElasticSearch之-安装Kibana Elasticsearch之-倒排索引 Elasticsearch之- ...
- vscode的一些优化设置
@ 目录 编辑代码区的字体设置 控制台字体设置 设置文件自动保存 自动猜测文件编码,防止乱码 关闭vscode的受限模式 取消每一次打开vscode都默认打开上次编辑的文件 编辑代码区的字体设置 控制 ...
- 省HVV初体验(edu)
浙江省HVV初体验 此次参加的HVV是edu分会场,总的来说是对HVV有了一个初步的认识,了解实战和靶场练习之间存在的巨大鸿沟. 经历了这次HVV,对于渗透测试有了更深一步的理解.渗透测试的本质就是信 ...
- Ubuntu,CenOS等Linux系统更改环境变量方法,以安装anaconda为例
[环境配置的原因] 在windows系统下,很多软件的安装都需要设置环境变量,比如安装JAVA JDK.如果不安装环境变量,在非软件安装的目录下运行javac命令,将会报告"找不到文件&qu ...