哈希函数:它把一个大范围的数字哈希(转化)成一个小范围的数字,这个小范围的数对应着数组的下标。使用哈希函数向数组插入数据后,这个数组就是哈希表。

冲突

当冲突产生时,一个方法是通过系统的方法找到数组的一个空位,并把这个单词填入,而不再用哈希函数得到数组的下标,这种方法称为开放地址法

组的每个数据项都创建一个子链表或子数组,那么数组内不直接存放单词,当产生冲突时,新的数据项直接存放到这个数组下标表示的链表中,这种方法称为链地址法

开放地址法

线性探测: 它沿着数组下标一步一步顺序的查找空白单元。

二次探测: 思想是探测相距较远的单元,而不是和原始位置相邻的单元。

再哈希法:再来一次Hash找位置

链地址法

自己写“Hash”

线性探测

public class MyHashTable {
private DataItem[] hashArray; //DataItem类,表示每个数据项信息
private int arraySize;//数组的初始大小
private int itemNum;//数组实际存储了多少项数据
private DataItem nonItem;//用于删除数据项 public MyHashTable(int arraySize){
this.arraySize = arraySize;
hashArray =new DataItem[arraySize];
nonItem =new DataItem(-1);//删除的数据项下标为-1
}
//判断数组是否存储满了
public boolean isFull(){
return (itemNum == arraySize);
} //判断数组是否为空
public boolean isEmpty(){
return (itemNum ==0);
} //打印数组内容
public void display(){
System.out.println("Table:");
for(int j =0 ; j < arraySize ; j++){
if(hashArray[j] !=null){
System.out.print(hashArray[j].getKey() +" ");
}else{
System.out.print("** ");
}
}
}
//通过哈希函数转换得到数组下标
public int hashFunction(int key){
return key%arraySize;
} //插入数据项
public void insert(DataItem item){
if(isFull()){
//扩展哈希表
System.out.println("哈希表已满,重新哈希化...");
extendHashTable();
}
int key = item.getKey();
int hashVal = hashFunction(key);
while(hashArray[hashVal] !=null && hashArray[hashVal].getKey() != -1){
++hashVal;
hashVal %= arraySize;
}
hashArray[hashVal] = item;
itemNum++;
}
/**
* 数组有固定的大小,而且不能扩展,所以扩展哈希表只能另外创建一个更大的数组,然后把旧数组中的数据插到新的数组中。
* 但是哈希表是根据数组大小计算给定数据的位置的,所以这些数据项不能再放在新数组中和老数组相同的位置上。
* 因此不能直接拷贝,需要按顺序遍历老数组,并使用insert方法向新数组中插入每个数据项。
* 这个过程叫做重新哈希化。这是一个耗时的过程,但如果数组要进行扩展,这个过程是必须的。
*/
public void extendHashTable(){
int num = arraySize;
itemNum =0;//重新计数,因为下面要把原来的数据转移到新的扩张的数组中
arraySize *=2;//数组大小翻倍
DataItem[] oldHashArray = hashArray;
hashArray =new DataItem[arraySize];
for(int i =0 ; i < num ; i++){
insert(oldHashArray[i]);
}
} //删除数据项
public DataItem delete(int key){
if(isEmpty()){
System.out.println("Hash Table is Empty!");
return null;
}
int hashVal = hashFunction(key);
while(hashArray[hashVal] !=null){
if(hashArray[hashVal].getKey() == key){
DataItem temp = hashArray[hashVal];
hashArray[hashVal] = nonItem;//nonItem表示空Item,其key为-1
itemNum--;
return temp;
}
++hashVal;
hashVal %= arraySize;
}
return null;
} //查找数据项
public DataItem find(int key){
int hashVal = hashFunction(key);
while(hashArray[hashVal] !=null){
if(hashArray[hashVal].getKey() == key){
return hashArray[hashVal];
}
++hashVal;
hashVal %= arraySize;
}
return null;
} public static class DataItem{
private int iData;
public DataItem(int iData){
this.iData = iData;
}
public int getKey(){
return iData;
}
} }

再Hash

public class HashDouble {
private DataItem[] hashArray; //DataItem类,表示每个数据项信息
private int arraySize;//数组的初始大小
private int itemNum;//数组实际存储了多少项数据
private DataItem nonItem;//用于删除数据项 public HashDouble(){
this.arraySize =13;
hashArray =new DataItem[arraySize];
nonItem =new DataItem(-1);//删除的数据项下标为-1
}
//判断数组是否存储满了
public boolean isFull(){
return (itemNum == arraySize);
} //判断数组是否为空
public boolean isEmpty(){
return (itemNum ==0);
} //打印数组内容
public void display(){
System.out.println("Table:");
for(int j =0 ; j < arraySize ; j++){
if(hashArray[j] !=null){
System.out.print(hashArray[j].getKey() +" ");
}else{
System.out.print("** ");
}
}
}
//通过哈希函数转换得到数组下标
public int hashFunction1(int key){
return key%arraySize;
} public int hashFunction2(int key){
return 5 - key%5;
} //插入数据项
public void insert(DataItem item){
if(isFull()){
//扩展哈希表
System.out.println("哈希表已满,重新哈希化...");
extendHashTable();
}
int key = item.getKey();
int hashVal = hashFunction1(key);
int stepSize = hashFunction2(key);//用第二个哈希函数计算探测步数
while(hashArray[hashVal] !=null && hashArray[hashVal].getKey() != -1){
hashVal += stepSize;
hashVal %= arraySize;//以指定的步数向后探测
}
hashArray[hashVal] = item;
itemNum++;
} /**
* 数组有固定的大小,而且不能扩展,所以扩展哈希表只能另外创建一个更大的数组,然后把旧数组中的数据插到新的数组中。
* 但是哈希表是根据数组大小计算给定数据的位置的,所以这些数据项不能再放在新数组中和老数组相同的位置上。
* 因此不能直接拷贝,需要按顺序遍历老数组,并使用insert方法向新数组中插入每个数据项。
* 这个过程叫做重新哈希化。这是一个耗时的过程,但如果数组要进行扩展,这个过程是必须的。
*/
public void extendHashTable(){
int num = arraySize;
itemNum =0;//重新计数,因为下面要把原来的数据转移到新的扩张的数组中
arraySize *=2;//数组大小翻倍
DataItem[] oldHashArray = hashArray;
hashArray =new DataItem[arraySize];
for(int i =0 ; i < num ; i++){
insert(oldHashArray[i]);
}
} //删除数据项
public DataItem delete(int key){
if(isEmpty()){
System.out.println("Hash Table is Empty!");
return null;
}
int hashVal = hashFunction1(key);
int stepSize = hashFunction2(key);
while(hashArray[hashVal] !=null){
if(hashArray[hashVal].getKey() == key){
DataItem temp = hashArray[hashVal];
hashArray[hashVal] = nonItem;//nonItem表示空Item,其key为-1
itemNum--;
return temp;
}
hashVal += stepSize;
hashVal %= arraySize;
}
return null;
} //查找数据项
public DataItem find(int key){
int hashVal = hashFunction1(key);
int stepSize = hashFunction2(key);
while(hashArray[hashVal] !=null){
if(hashArray[hashVal].getKey() == key){
return hashArray[hashVal];
}
hashVal += stepSize;
hashVal %= arraySize;
}
return null;
}
public static class DataItem{
private int iData;
public DataItem(int iData){
this.iData = iData;
}
public int getKey(){
return iData;
}
}
}

参考链接

https://www.cnblogs.com/ysocean/p/8032656.html

Hash冲突以及解决的更多相关文章

  1. hash 冲突及解决办法。

    hash 冲突及解决办法. 关键字值不同的元素可能会映象到哈希表的同一地址上就会发生哈希冲突.解决办法: 1)开放定址法:当冲突发生时,使用某种探查(亦称探测)技术在散列表中形成一个探查(测)序列.沿 ...

  2. Hash冲突的解决--暴雪的Hash算法

    Hash冲突的解决--暴雪的Hash算法https://usench.iteye.com/blog/2199399https://www.bbsmax.com/A/kPzOO7a8zx/

  3. Cuckoo Hash——Hash冲突的解决办法

    参考文献: 1.Cuckoo Filter hash算法 2.cuckoo hash 用途: Cuckoo Hash(布谷鸟散列).问了解决哈希冲突的问题而提出,利用较少的计算换取较大的空间.占用空间 ...

  4. Hash冲突的解决方法

    虽然我们不希望发生冲突,但实际上发生冲突的可能性仍是存在的.当关键字值域远大于哈希表的长度,而且事先并不知道关键字的具体取值时.冲突就难免会发 生.另外,当关键字的实际取值大于哈希表的长度时,而且表中 ...

  5. 关于hash冲突的解决

    分离链接法:public class SeparateChainingHashTable<AnyType>{ private static final int DEFAULT_TABLE_ ...

  6. hash冲突解决和javahash冲突解决

    其实就是四种方法的演变 1.开放定址法 具体就是把数据的标志等的对长度取模 有三种不同的取模 线性探测再散列 给数据的标志加增量,取模 平方探测再散列 给数据的标志平方,取模 随机探测再散列 把数据的 ...

  7. Map之HashMap的get与put流程,及hash冲突解决方式

    在java中HashMap作为一种Map的实现,在程序中我们经常会用到,在此记录下其中get与put的执行过程,以及其hash冲突的解决方式: HashMap在存储数据的时候是key-value的键值 ...

  8. hash冲突随笔

    一:hash表 也叫散列表,以key-value的形式存储数据,就是将需要存储的关键码值通过hash函数映射到表中的位置,可加快访问速度. 二:hash冲突 如果两个相同的关键码值通过hash函数映射 ...

  9. 链表法解决hash冲突

    /* @链表法解决hash冲突 * 大单元数组,小单元链表 */ #pragma once #include <string> using namespace std; template& ...

随机推荐

  1. 一比一还原axios源码(六)—— 配置化

    上一章我们完成了拦截器的代码实现,这一章我们来看看配置化是如何实现的.首先,按照惯例我们来看看axios的文档是怎么说的: 首先我们可以可以通过axios上的defaults属性来配置api. 我们可 ...

  2. LCD1602----LiquidCrystal库的使用1

    一:硬件介绍: 1.引脚定义: 2.屏幕介绍: 1602液晶也叫1602字符型液晶,它是一种专门用来显示字母.数字.符号的点阵型液晶模块.它是由若干个5x7或者5x10的点阵字符位组成,每个点阵字符位 ...

  3. mq消息堆积处理

    1.大量消息在mq里积压 场景:几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多.线上故障了,这个时候要不然就是修复consumer的问题,让他恢复消费速度,然 ...

  4. Django的缓存机制和信号

    Django的缓存机制 1.1 缓存介绍 1.缓存的简介 在动态网站中,用户所有的请求,服务器都会去数据库中进行相应的增,删,查,改,渲染模板,执行业务逻辑,最后生成用户看到的页面. 当一个网站的用户 ...

  5. 【Vulnhub练习】Billu_b0x

    靶机说明 虚拟机难度中等,使用ubuntu(32位),其他软件包有: PHP apache MySQL 目标 Boot to root:从Web应用程序进入虚拟机,并获得root权限. 运行环境 靶机 ...

  6. C++设计模式 - 访问器模式(Visitor)

    行为变化模式 在组件的构建过程中,组件行为的变化经常导致组件本身剧烈的变化."行为变化" 模式将组件的行为和组件本身进行解耦,从而支持组件行为的变化,实现两者之间的松耦合. 典型模 ...

  7. springboot项目配置类

    一.在springboot项目中,如果不进行配置,直接访问静态页面是无法访问的,需要进行配置,springboot舍弃了XML文件的配置方式,这里我们采用开发配置类的方式.新建MvcConfig类,加 ...

  8. Kerberos基本原理、安装部署及用法

    1. 概述 Kerberos是一种认证机制. 目的是,通过密钥系统为客户端/服务器应用程序提供强大的认证系统:保护服务器防止错误的用户使用,同时保护它的用户使用正确的服务器,即支持双向验证:Kerbe ...

  9. 【算法篇】Bitmap 算法

    首先,什么是Bitmap算法(位图算法)呢? 一:定义: Bit map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.使用Bit为用来存储数据的单位, 可以大大节省存储空间. ...

  10. 讲一讲 kafka 的 ack 的三种机制 ?

    request.required.acks 有三个值 0 1 -1(all) 0:生产者不会等待 broker 的 ack,这个延迟最低但是存储的保证最弱当 server 挂 掉的时候就会丢数据. 1 ...