Pytorch GPU加速
import torch
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
#超参数
batch_size=200
learning_rate=0.01
epochs=10
#获取训练数据
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True, #train=True则得到的是训练集
transform=transforms.Compose([ #transform进行数据预处理
transforms.ToTensor(), #转成Tensor类型的数据
transforms.Normalize((0.1307,), (0.3081,)) #进行数据标准化(减去均值除以方差)
])),
batch_size=batch_size, shuffle=True) #按batch_size分出一个batch维度在最前面,shuffle=True打乱顺序
#获取测试数据
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential( #定义网络的每一层,nn.ReLU可以换成其他激活函数,比如nn.LeakyReLU()
nn.Linear(784, 200),
nn.ReLU(inplace=True),
nn.Linear(200, 200),
nn.ReLU(inplace=True),
nn.Linear(200, 10),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.model(x)
return x
net = MLP()
#定义sgd优化器,指明优化参数、学习率,net.parameters()得到这个类所定义的网络的参数[[w1,b1,w2,b2,...]
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss()
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
data = data.view(-1, 28*28) #将二维的图片数据摊平[样本数,784]
logits = net(data) #前向传播
loss = criteon(logits, target) #nn.CrossEntropyLoss()自带Softmax
optimizer.zero_grad() #梯度信息清空
loss.backward() #反向传播获取梯度
optimizer.step() #优化器更新
if batch_idx % 100 == 0: #每100个batch输出一次信息
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
test_loss = 0
correct = 0 #correct记录正确分类的样本数
for data, target in test_loader:
data = data.view(-1, 28 * 28)
logits = net(data)
test_loss += criteon(logits, target).item() #其实就是criteon(logits, target)的值,标量
pred = logits.data.max(dim=1)[1] #也可以写成pred=logits.argmax(dim=1)
correct += pred.eq(target.data).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
C:\Users\ygx79\AppData\Local\Programs\Python\Python37\lib\site-packages\torchvision\io\image.py:11: UserWarning: Failed to load image Python extension: [WinError 126] 找不到指定的模块。
warn(f"Failed to load image Python extension: {e}")
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data\MNIST\raw\train-images-idx3-ubyte.gz
9913344it [09:45, 16922.35it/s]
Extracting ../data\MNIST\raw\train-images-idx3-ubyte.gz to ../data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data\MNIST\raw\train-labels-idx1-ubyte.gz
29696it [00:00, 112126.01it/s]
Extracting ../data\MNIST\raw\train-labels-idx1-ubyte.gz to ../data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data\MNIST\raw\t10k-images-idx3-ubyte.gz
1649664it [00:06, 236143.14it/s]
Extracting ../data\MNIST\raw\t10k-images-idx3-ubyte.gz to ../data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data\MNIST\raw\t10k-labels-idx1-ubyte.gz
5120it [00:00, ?it/s]
Extracting ../data\MNIST\raw\t10k-labels-idx1-ubyte.gz to ../data\MNIST\raw
Train Epoch: 0 [0/60000 (0%)] Loss: 2.307192
Train Epoch: 0 [20000/60000 (33%)] Loss: 2.138816
Train Epoch: 0 [40000/60000 (67%)] Loss: 1.768016
Test set: Average loss: 0.0070, Accuracy: 6058/10000 (61%)
Train Epoch: 1 [0/60000 (0%)] Loss: 1.505597
Train Epoch: 1 [20000/60000 (33%)] Loss: 1.149395
Train Epoch: 1 [40000/60000 (67%)] Loss: 1.039293
Test set: Average loss: 0.0047, Accuracy: 7143/10000 (71%)
Train Epoch: 2 [0/60000 (0%)] Loss: 1.061429
Train Epoch: 2 [20000/60000 (33%)] Loss: 0.741140
Train Epoch: 2 [40000/60000 (67%)] Loss: 0.901448
Test set: Average loss: 0.0041, Accuracy: 7299/10000 (73%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.809117
Train Epoch: 3 [20000/60000 (33%)] Loss: 0.892138
Train Epoch: 3 [40000/60000 (67%)] Loss: 0.659411
Test set: Average loss: 0.0030, Accuracy: 8170/10000 (82%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.622007
Train Epoch: 4 [20000/60000 (33%)] Loss: 0.592337
Train Epoch: 4 [40000/60000 (67%)] Loss: 0.445400
Test set: Average loss: 0.0027, Accuracy: 8225/10000 (82%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.519135
Train Epoch: 5 [20000/60000 (33%)] Loss: 0.491247
Train Epoch: 5 [40000/60000 (67%)] Loss: 0.562315
Test set: Average loss: 0.0026, Accuracy: 8295/10000 (83%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.509583
Train Epoch: 6 [20000/60000 (33%)] Loss: 0.553628
Train Epoch: 6 [40000/60000 (67%)] Loss: 0.484189
Test set: Average loss: 0.0025, Accuracy: 8336/10000 (83%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.619250
Train Epoch: 7 [20000/60000 (33%)] Loss: 0.634936
Train Epoch: 7 [40000/60000 (67%)] Loss: 0.440220
Test set: Average loss: 0.0024, Accuracy: 8370/10000 (84%)
Train Epoch: 8 [0/60000 (0%)] Loss: 0.410350
Train Epoch: 8 [20000/60000 (33%)] Loss: 0.460459
Train Epoch: 8 [40000/60000 (67%)] Loss: 0.395150
Test set: Average loss: 0.0024, Accuracy: 8395/10000 (84%)
Train Epoch: 9 [0/60000 (0%)] Loss: 0.515630
Train Epoch: 9 [20000/60000 (33%)] Loss: 0.546718
Train Epoch: 9 [40000/60000 (67%)] Loss: 0.496167
Test set: Average loss: 0.0023, Accuracy: 8433/10000 (84%)
device = torch.device('cuda:0')
net = MLP().to(device)
#定义sgd优化器,指明优化参数、学习率,net.parameters()得到这个类所定义的网络的参数[[w1,b1,w2,b2,...]
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)
GPU acc
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
#超参数
batch_size=200
learning_rate=0.01
epochs=10
#获取训练数据
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True, #train=True则得到的是训练集
transform=transforms.Compose([ #transform进行数据预处理
transforms.ToTensor(), #转成Tensor类型的数据
transforms.Normalize((0.1307,), (0.3081,)) #进行数据标准化(减去均值除以方差)
])),
batch_size=batch_size, shuffle=True) #按batch_size分出一个batch维度在最前面,shuffle=True打乱顺序
#获取测试数据
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential( #定义网络的每一层,
nn.Linear(784, 200),
nn.ReLU(inplace=True),
nn.Linear(200, 200),
nn.ReLU(inplace=True),
nn.Linear(200, 10),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.model(x)
return x
device = torch.device('cuda:0')
net = MLP().to(device)
#定义sgd优化器,指明优化参数、学习率,net.parameters()得到这个类所定义的网络的参数[[w1,b1,w2,b2,...]
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
data = data.view(-1, 28*28) #将二维的图片数据摊平[样本数,784]
data, target = data.to(device), target.cuda()
logits = net(data) #前向传播
loss = criteon(logits, target) #nn.CrossEntropyLoss()自带Softmax
optimizer.zero_grad() #梯度信息清空
loss.backward() #反向传播获取梯度
optimizer.step() #优化器更新
if batch_idx % 100 == 0: #每100个batch输出一次信息
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
test_loss = 0
correct = 0 #correct记录正确分类的样本数
for data, target in test_loader:
data = data.view(-1, 28 * 28)
data, target = data.to(device), target.cuda()
logits = net(data)
test_loss += criteon(logits, target).item() #其实就是criteon(logits, target)的值,标量
pred = logits.data.max(dim=1)[1] #也可以写成pred=logits.argmax(dim=1)
correct += pred.eq(target.data).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
Train Epoch: 0 [0/60000 (0%)] Loss: 2.291108
Train Epoch: 0 [20000/60000 (33%)] Loss: 2.003711
Train Epoch: 0 [40000/60000 (67%)] Loss: 1.419139
Test set: Average loss: 0.0038, Accuracy: 8229/10000 (82%)
Train Epoch: 1 [0/60000 (0%)] Loss: 0.754257
Train Epoch: 1 [20000/60000 (33%)] Loss: 0.655030
Train Epoch: 1 [40000/60000 (67%)] Loss: 0.444529
Test set: Average loss: 0.0021, Accuracy: 8884/10000 (89%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.439030
Train Epoch: 2 [20000/60000 (33%)] Loss: 0.355868
Train Epoch: 2 [40000/60000 (67%)] Loss: 0.366360
Test set: Average loss: 0.0017, Accuracy: 9037/10000 (90%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.439010
Train Epoch: 3 [20000/60000 (33%)] Loss: 0.344060
Train Epoch: 3 [40000/60000 (67%)] Loss: 0.255032
Test set: Average loss: 0.0015, Accuracy: 9116/10000 (91%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.331074
Train Epoch: 4 [20000/60000 (33%)] Loss: 0.301065
Train Epoch: 4 [40000/60000 (67%)] Loss: 0.276514
Test set: Average loss: 0.0014, Accuracy: 9169/10000 (92%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.281249
Train Epoch: 5 [20000/60000 (33%)] Loss: 0.316320
Train Epoch: 5 [40000/60000 (67%)] Loss: 0.248902
Test set: Average loss: 0.0013, Accuracy: 9210/10000 (92%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.317820
Train Epoch: 6 [20000/60000 (33%)] Loss: 0.315888
Train Epoch: 6 [40000/60000 (67%)] Loss: 0.302683
Test set: Average loss: 0.0013, Accuracy: 9258/10000 (93%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.290187
Pytorch GPU加速的更多相关文章
- 56 Marvin: 一个支持GPU加速、且不依赖其他库(除cuda和cudnn)的轻量化多维深度学习(deep learning)框架介绍
0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其 ...
- 手把手教你在win10下搭建pytorch GPU环境(Anaconda+Pycharm)
Anaconda指的是一个开源的Python发行版本,其主要优点如下: Anaconda默认安装了常见的科学计算包,用它搭建起Python环境后不用再费时费力安装这些包: Anaconda可以创建互相 ...
- 0704-使用GPU加速_cuda
0704-使用GPU加速_cuda 目录 一.CPU 和 GPU 数据相互转换 二.使用 GPU 的注意事项 三.设置默认 GPU 四.GPU 之间的切换 pytorch完整教程目录:https:// ...
- GPU加速计算
GPU加速计算 NVIDIA A100 Tensor Core GPU 可针对 AI.数据分析和高性能计算 (HPC),在各种规模上实现出色的加速,应对极其严峻的计算挑战.作为 NVIDIA 数据中心 ...
- GPU—加速数据科学工作流程
GPU-加速数据科学工作流程 GPU-ACCELERATE YOUR DATA SCIENCE WORKFLOWS 传统上,数据科学工作流程是缓慢而繁琐的,依赖于cpu来加载.过滤和操作数据,训练和部 ...
- 深度学习GPU加速配置方法
深度学习GPU加速配置方法 一.英伟达官方驱动及工具安装 首先检查自己的电脑驱动版本,未更新至最新建议先将驱动更新至最新,然后点击Nvidia控制面板 2.在如下界面中点击系统信息,点击显示可以看见当 ...
- Theano在windows下的安装及GPU加速
安装环境:wondows 64bit Teano安装测试 1. Anaconda 安装 Anaconda是一个科学计算环境,自带的包管理器conda很强大.之所以选择它是因为它内置了python,以及 ...
- GPU 加速NLP任务(Theano+CUDA)
之前学习了CNN的相关知识,提到Yoon Kim(2014)的论文,利用CNN进行文本分类,虽然该CNN网络结构简单效果可观,但论文没有给出具体训练时间,这便值得进一步探讨. Yoon Kim代码:h ...
- 开启gpu加速的高性能移动端相框组件!
通过设置新的css3新属性translateX来代替传统的绝对定位改变left值的动画原理,新属性translateX会开启浏览器自带的gpu硬件加速动画性能,提高流畅度从而提高用户体验, 代码有很详 ...
- ubuntu 15 安装cuda,开启GPU加速
1 首先要开启GPU加速就要安装cuda.安装cuda,首先要安装英伟达的驱动.ubuntu有自带的开源驱动,首先要禁用nouveau.这儿要注意,虚拟机不能安装ubuntu驱动.VMWare下显卡只 ...
随机推荐
- Docker 数据迁移到数据盘
systemctl stop docker 找到新的.空间较达的磁盘路径,然后创建任意目录.例如: mkdir /data/docker mv /var/lib/docker /data/docker ...
- npm i不成功devDependencies解决方法
npm config ls -l 查看npm配置发现production为true,所以i不成功 npm config set production false 将production设置为false ...
- vuex状态管理器
vuex核心概念 // vuex中一共有五个状态 State Getter Mutation Action Module import Vue from 'vue' import Vuex from ...
- 解决从PLSQL导出到CSV文件的时候提示 is not a valid date and time的问题
操作下面步骤的时候,报出[XXXXXis not a valid date and time]的错误 问题原因:以前嫌弃任务栏右下角的时间显示格式不好,手动手改了一下,导致Oracle的日期格式与现在 ...
- 算法图解 - 第1章 二分查找 与大O
例子:猜一个1到100之间的数,最多猜几次? # 最糟糕的猜法:一个一个的猜 - 最多查找次数: n - 运行时间: O(n) # 二分查找:在有序的一组数中猜一个数,对半猜.找到返回其位置(索引) ...
- ASP.NET WebAPI 单元测试-UnitTest
xUnit.Net
- 访问不了github解决方案
1.首先通过网址https://github.com.ipaddress.com/www.github.com查看当前github.com对应的IP地址,查到的信息如下图所示 修改hosts文件,wi ...
- 无法启动iis服务器
网上的大多数教程都千篇一律,增加我寻找解决方法的难度 ,在我边气边找的努力下终于找到了解决办法. 不过还是建议先去看其他的教程,其他的不行的话再来看这个 因为工作进程未能正确初始化,因而无法启动.返回 ...
- ping 请求找不到主机 www.baidu.com
1.以管理员方式运行cmd 2.输入netsh winsock reset 3.重启电脑 4.如果还是不行,就删除C:\Windows\System32\drivers\etc里面的hosts文件试试 ...
- Pytest Fixture(三)
name: name参数表示可以对fixture的名称进行重命名: 注意:通过name重命名后,继续使用以前的名字调用会报错. import pytest @pytest.fixture(name=' ...