【深度学习】DNN房价预测
前言
我们使用深度学习网络实现波士顿房价预测,深度学习的目的就是寻找一个合适的函数输出我们想要的结果。深度学习实际上是机器学习领域中一个研究方向,深度学习的目标是让机器能够像人一样具有分析学习的能力,能够识别文字、图像、声音等数据。我认为深度学习与机器学习最主要的区别就是神经元。
深度学习中重要内容
建立模型——神经元
基本构造

- 一个神经元对应一组权重w,a代表输入,我们把输入与权重相乘再相加,再加上偏置b,最后通过激活函得到对应的输出。
- 我们不看激活函数,只看前面的部分会发现其实就是一个线性函数f=kx+b(k表示斜率,b表示截距)
- w和b就是我们需要在训练中需要寻找的,
- 学习网络就是通过很多个这样的神经元组合而成。
建立模型——激活函数
为什么引入激活函数
- 激活函数是为了增强网络的表达能力,我们需要激活函数来将线性函数转变为非线性函数。
- 非线性的激活函数需要有连续性,因为连续非线性激活函数可导的,所以可以用最优化的方法来求解
激活函数的种类

建立模型——前馈神经网络

- 我们输入1和-1分别和每一组的权重相乘相加得到4和-2的结果,然后经过激活函数(激活函数实际上也是一个简单函数,但是具有某些特性,可以用来解决问题的目的,例如激活函数是y=x-1,我们输入4,输出结果就是3。)得到0.98和0.12.依次往后计算就是前馈神经网络。
建立模型——深度神经网络
神经网络解决的问题有很多,例如分类、预测、回归等。这里我们给出两个解决类型。
分类
- 输出层就是输入的数据维度,例如我们要分类图形是正方型还是长方形,那我们可以是3维的输入,一个内角,两条临边。就可以判断。也可以是五维的,一个内角,4条边)
- 输出层y就是结果,就上面举例的图形分类,那结果可以有2个,长方形和正方形,例如y1代表长方形,y2代表正方形,输出的结果那个数值大就是那种类型,也可以增加一个都不是的结果)

预测
- 今天的波士顿房价预测就是预测模型,我们通过地段,房屋面积等等,预测房价的多少。

损失函数
- 常用损失函数
平方损失函数、交叉熵损失函数,不同的问题运用不同的损失函数 - 用于衡量我们输入结果和真实结果的差异
- 目的通过损失去修正我们的参数是我们的模型更完美
实践——波士顿房价预测
数据集
使用paddle飞桨波士顿数据集
https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/text/UCIHousing_cn.html
绘图
## 绘图
Batch = 0
Batchs = []
all_train_accs = []
def draw_train_acc(Batchs,train_accs):
title = "training accs"
plt.title(title)
plt.xlabel("batch")
plt.ylabel("acc")
plt.plot(Batchs, train_accs, color = 'green', label = 'training accs')
plt.legend()
plt.grid()
plt.show()
all_train_loss = []
def draw_train_loss(Batchs,train_loss):
title = "training loss"
plt.title(title)
plt.xlabel("batch")
plt.ylabel("loss")
plt.plot(Batchs, train_loss, color = 'red', label = 'training loss')
plt.legend()
plt.grid()
plt.show()
## 绘制真实值与预测值的对比图
def draw_infer_result(groud_truths, infer_results):
title = 'Boston'
plt.title(title)
x = np.arange(1,20)
y = x
plt.plot(x,y);
plt.xlabel("ground truth")
plt.ylabel("infer result")
plt.scatter(groud_truths,infer_results,color='green',label='training cost')
plt.grid()
plt.show()
网络搭建
'''
核心
网络搭建
'''
class MyDNN(paddle.nn.Layer):
def __init__(self):
super(MyDNN, self).__init__()
#self.linear1 = paddle.nn.Linear(13,1,None) #全连接层,paddle.nn.Linear(in_features,out_features,weight)
self.linear1 = paddle.nn.Linear(13, 32, None)
self.linear2 = paddle.nn.Linear(32, 64, None)
self.linear3 = paddle.nn.Linear(64, 32, None)
self.linear4 = paddle.nn.Linear(32, 1, None)
def forward(self, inputs): ## 传播函数
x = self.linear1(inputs)
x = self.linear2(x)
x = self.linear3(x)
x = self.linear4(x)
return x
模型训练与测试
'''
网络训练与测试
'''
## 实例化
model = MyDNN()
model.train()
mse_loss = paddle.nn.MSELoss()
opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())
epochs_num = 100
for epochs in range(epochs_num):
for batch_id,data in enumerate(train_loader()):
feature = data[0]
label = data[1]
predict = model(feature)
loss = mse_loss(predict, label)
loss.backward()
opt.step()
opt.clear_grad()
if batch_id!=0 and batch_id%10 == 0:
Batch = Batch+10
Batchs.append(Batch)
all_train_loss.append(loss.numpy()[0])
print("epoch{},step:{},train_loss:{}".format(epochs,batch_id,loss.numpy()[0]))
paddle.save(model.state_dict(),"UCIHousingDNN")
draw_train_loss(Batchs,all_train_loss)
para_state = paddle.load("UCIHousingDNN")
model = MyDNN()
model.eval()
model.set_state_dict(para_state)
losses = []
for batch_id,data in enumerate(eval_loader()):
feature = data[0]
label = data[1]
predict = model(feature)
loss = mse_loss(predict,label)
losses.append(loss.numpy()[0])
avg_loss = np.mean(losses)
print(avg_loss)
draw_infer_result(label,predict)
代码
## 深度学习框架
import paddle
import numpy as np
import os
import matplotlib.pyplot as plt
## 绘图
Batch = 0
Batchs = []
all_train_accs = []
def draw_train_acc(Batchs,train_accs):
title = "training accs"
plt.title(title)
plt.xlabel("batch")
plt.ylabel("acc")
plt.plot(Batchs, train_accs, color = 'green', label = 'training accs')
plt.legend()
plt.grid()
plt.show()
all_train_loss = []
def draw_train_loss(Batchs,train_loss):
title = "training loss"
plt.title(title)
plt.xlabel("batch")
plt.ylabel("loss")
plt.plot(Batchs, train_loss, color = 'red', label = 'training loss')
plt.legend()
plt.grid()
plt.show()
## 绘制真实值与预测值的对比图
def draw_infer_result(groud_truths, infer_results):
title = 'Boston'
plt.title(title)
x = np.arange(1,20)
y = x
plt.plot(x,y);
plt.xlabel("ground truth")
plt.ylabel("infer result")
plt.scatter(groud_truths,infer_results,color='green',label='training cost')
plt.grid()
plt.show()
'''
数据集加载
'''
train_dataset = paddle.text.datasets.UCIHousing(mode="train")
eval_dataset = paddle.text.datasets.UCIHousing(mode="test")
train_loader = paddle.io.DataLoader(train_dataset,batch_size=32, shuffle=True)
eval_loader = paddle.io.DataLoader(eval_dataset,batch_size=8,shuffle=False)
print(train_dataset[1])
'''
核心
网络搭建
'''
class MyDNN(paddle.nn.Layer):
def __init__(self):
super(MyDNN, self).__init__()
#self.linear1 = paddle.nn.Linear(13,1,None) #全连接层,paddle.nn.Linear(in_features,out_features,weight)
self.linear1 = paddle.nn.Linear(13, 32, None)
self.linear2 = paddle.nn.Linear(32, 64, None)
self.linear3 = paddle.nn.Linear(64, 32, None)
self.linear4 = paddle.nn.Linear(32, 1, None)
def forward(self, inputs): ## 传播函数
x = self.linear1(inputs)
x = self.linear2(x)
x = self.linear3(x)
x = self.linear4(x)
return x
'''
网络训练与测试
'''
## 实例化
model = MyDNN()
model.train()
mse_loss = paddle.nn.MSELoss()
opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())
epochs_num = 100
for epochs in range(epochs_num):
for batch_id,data in enumerate(train_loader()):
feature = data[0]
label = data[1]
predict = model(feature)
loss = mse_loss(predict, label)
loss.backward()
opt.step()
opt.clear_grad()
if batch_id!=0 and batch_id%10 == 0:
Batch = Batch+10
Batchs.append(Batch)
all_train_loss.append(loss.numpy()[0])
print("epoch{},step:{},train_loss:{}".format(epochs,batch_id,loss.numpy()[0]))
paddle.save(model.state_dict(),"UCIHousingDNN")
draw_train_loss(Batchs,all_train_loss)
para_state = paddle.load("UCIHousingDNN")
model = MyDNN()
model.eval()
model.set_state_dict(para_state)
losses = []
for batch_id,data in enumerate(eval_loader()):
feature = data[0]
label = data[1]
predict = model(feature)
loss = mse_loss(predict,label)
losses.append(loss.numpy()[0])
avg_loss = np.mean(losses)
print(avg_loss)
draw_infer_result(label,predict)
结果展示


【深度学习】DNN房价预测的更多相关文章
- 蛋白质组DIA深度学习之谱图预测
目录 1. 简介 2. 近几年发表的主要工具 1.DeepRT 2.Prosit 3. DIANN 4.DeepDIA 1. 简介 基于串联质谱的蛋白质组学大部分是依赖于数据库(database se ...
- 时尚与深度学习系列:Fashion forward: Forecasting visual style in fashion
https://arxiv.org/pdf/1705.06394.pdf 将深度学习与时尚预测联系在一起,是一个很有趣但是估计结果会没什么成效的话题.因为,时尚预测这一领 ...
- 贝叶斯深度学习(bayesian deep learning)
本文简单介绍什么是贝叶斯深度学习(bayesian deep learning),贝叶斯深度学习如何用来预测,贝叶斯深度学习和深度学习有什么区别.对于贝叶斯深度学习如何训练,本文只能大致给个介绍. ...
- ML平台_微博深度学习平台架构和实践
( 转载至: http://www.36dsj.com/archives/98977) 随着人工神经网络算法的成熟.GPU计算能力的提升,深度学习在众多领域都取得了重大突破.本文介绍了微博引入深度学 ...
- 动手学深度学习17-kaggle竞赛实践小项目房价预测
kaggle竞赛 获取和读取数据集 数据预处理 找出所有数值型的特征,然后标准化 处理离散值特征 转化为DNArray后续训练 训练模型 k折交叉验证 预测样本,并提交结果 kaggle竞赛 本节将动 ...
- 用深度学习(DNN)构建推荐系统 - Deep Neural Networks for YouTube Recommendations论文精读
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouT ...
- 深度学习——深度神经网络(DNN)反向传播算法
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础. 回顾监督学习的一般性问题.假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, ...
- 基于 Keras 用深度学习预测时间序列
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 T ...
- Deep-learning augmented RNA-seq analysis of transcript splicing | 用深度学习预测可变剪切
可变剪切的预测已经很流行了,目前主要有两个流派: 用DNA序列以及variant来预测可变剪切:GeneSplicer.MaxEntScan.dbscSNV.S-CAP.MMSplice.clinVa ...
随机推荐
- Python中plt.plot()、plt.scatter()和plt.legend函数的用法示例
参考:http://www.cppcns.com/jiaoben/python/471948.html https://blog.csdn.net/weixin_44825185/article/de ...
- Linux/Ubuntu 安装Redis
更新记录 2022年6月15日 发布. 2022年6月12日 开始编写. 安装Redis 更新源 sudo apt update 安装redis sudo apt install redis-serv ...
- 六、LVM和从磁盘配额
一.LVM概述 Logical Volume Manager,逻辑卷管理 优点:能够保证在现有数据不变的情况下,动态调整磁盘容量,从而提高磁盘管理的灵活性 /boot分区用于存放引导文件,不能基于LV ...
- TypeScript(6)函数
函数 函数是 JavaScript 应用程序的基础,它帮助你实现抽象层,模拟类,信息隐藏和模块.在 TypeScript 里,虽然已经支持类,命名空间和模块,但函数仍然是主要的定义行为的地方.Type ...
- Spring框架系列(8) - Spring IOC实现原理详解之Bean实例化(生命周期,循环依赖等)
上文,我们看了IOC设计要点和设计结构:以及Spring如何实现将资源配置(以xml配置为例)通过加载,解析,生成BeanDefination并注册到IoC容器中的:容器中存放的是Bean的定义即Be ...
- python带你采集不可言说网站数据,并带你多重骚操作~
前言 嗨喽,大佬们好鸭!这里是小熊猫~ 今天我们采集国内知名的shipin弹幕网站! 这里有及时的动漫新番,活跃的ACG氛围,有创意的Up主. 大家可以在这里找到许多欢乐. 目录(可根据个人情况点击你 ...
- HDFS存储目录分析
一.介绍 HDFS metadata以树状结构存储整个HDFS上的文件和目录,以及相应的权限.配额和副本因子(replication factor)等.本文基于Hadoop2.6版本介绍HDFS Na ...
- 利用MATLAB仿真节点个数和节点通信半径与网络连通率的关系
一.目的 ①在不同节点个数的情况下,用Matlab拟合出连通率与通信半径的关系曲线. ②在不同节点通信半径的情况下,用Matlab拟合出连通率与节点个数的关系曲线. 二.方法描述 在1x1的单位矩形中 ...
- spring-security 配置简介
1.Spring Security 简介 Spring Security 是一个能够基于 Spring 的企业应用系统提供声明式的安全访问控制解决方案的安全框架.它提供了一组可以在 Spring 应用 ...
- Object类和Dome的新媒体类型
Object类 所有的类都是继承自Object的 Java Object 类是所有类的父类,也就是说 Java 的所有类都继承了 Object,子类可以使用 Object 的所有方法 Object 类 ...