题面

给一个长为 \(n\) 的序列,\(m\) 次操作,每次操作:

1、区间 \([l,r]\) 加 \(x\)

2、对于区间 \([l,r]\),查询:

\[a[l]^{a[l+1]^{a[l+2]^{\dots ^{a[r]}}}} \pmod p
\]

\(n , m \le 500000\) , 序列中每个数在 \([1,2\cdot 10^9]\) 内,\(p \le 2 \cdot 10^7\) , 每次加上的数在 \([0,2\cdot 10^9]\) 内

思路

见区间操作,想线段树,但是这道题是可以树状数组的。

首先大家应该知道扩展欧拉定理(EX Euler Theorem):

\[a^{b} \equiv \left\{\begin{align}
a^{b}\ (b \lt φ(p))\\
a^{b \mod φ(p)+φ(p)}(b \ge φ(p))
\end{align}\right.\pmod{p}
\]

然后我们就可以设计一个递推来处理 \(2\) 操作。

注意,\(b\) 和 \(φ(p)\) 的大小关系不太好判断,我们可以暴力建一个结构体。

数据结构用树状数组

代码

#include <bits/stdc++.h>
#define int long long
using namespace std; int n,m;
int phi[20000003]; namespace bit{
int t[500005];
void clear(){memset(t,0,sizeof(t));}
inline int lowbit(int x){
return x&(-x);
}
int query(int p){
int res=0;
while(p){
res+=t[p];
p-=lowbit(p);
}
return res;
}
void update(int p,int v){
while(p<=n){
t[p]+=v;
p+=lowbit(p);
}
}
void update(int l,int r,int v){
update(l,v);
update(r+1,-v);
}
} void phi_table(int n) {
memset(phi,0,sizeof(phi));
phi[1] = 1;
for (int i = 2; i <= n; i++) {
if (!phi[i]) {
for (int j = i; j <= n; j += i) {
if (!phi[j]) {
phi[j] = j;
}
phi[j] = phi[j] / i * (i - 1);
}
}
}
} int qzh[500005]; typedef pair<int,bool> node; inline node pow(int a,int t,int p){
node res = make_pair(1,0);
if(a>=p){a %= p;res.second = 1;}
while(t){
if(t&1) res.first *= a;
if(res.first>=p){res.second = 1;res.first %= p;}a *= a;
if(a>=p){res.second = 1;a %= p;}t >>= 1;}
return res;
} node solve(int l,int r,int x){
int left=bit::query(l);
node result;
if(x==1){
return make_pair(0,1);
}
if(left==1){
return make_pair(1,0);
}
if(l==r){
return left<x?make_pair(left,0):make_pair(left%x,1);
}
int phiv=phi[x];
result=solve(l+1,r,phiv);
if(result.second){
result.first+=phiv;
}
return pow(left,result.first,x);
} signed main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cin>>n>>m;
phi_table(20000000);
bit::clear();
for(int i=1,tmp;i<=n;i++){
cin>>tmp;
bit::update(i,i,tmp);
}
while(m--){
int op,l,r,p;
cin>>op>>l>>r>>p;
if(op==1){
bit::update(l,r,p);
}
else{
cout<<solve(l,r,p).first<<'\n';
}
}
return 0;
}

P3934 [Ynoi2016] 炸脖龙 I的更多相关文章

  1. [洛谷P4118][Ynoi2016]炸脖龙I([洛谷P3934]Nephren Ruq Insania)

    题目大意:有$n$个数,每个数为$s_i$,两个操作: $1\;l\;r\;x:$表示将区间$[l,r]$内的数加上$x$ $2\;l\;r\;p:$表示求$s_l^{s_{l+1}^{^{s_{l+ ...

  2. BZOJ 5394 [Ynoi2016]炸脖龙 (线段树+拓展欧拉定理)

    题目大意:给你一个序列,需要支持区间修改,以及查询一段区间$a_{i}^{a_{i+1}^{a_{i+2}...}}mod\;p$的值,每次询问的$p$的值不同 对于区间修改,由线段树完成,没什么好说 ...

  3. BZOJ5394: [Ynoi2016]炸脖龙(欧拉广义降幂)

    就是让你求这个: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5394 解题思路: NOIP2018后第一道题,感觉非常像那个上帝与集合的 ...

  4. P4118 [Ynoi2016]炸脖龙I

    思路:扩展欧拉定理 提交:\(\geq5\)次 错因:快速幂时刚开始没有判断\(a\)是否大于\(p\) 题解: 用树状数组维护差分,查询时暴力从左端点的第一个数向右端点递归,若递归时发现指数变为\( ...

  5. Luogu P4118 [Ynoi2016]炸脖龙I

    题目 首先考虑没有修改的情况.显然直接暴力扩展欧拉定理就行了,单次复杂度为\(O(\log p)\)的. 现在有了修改,我们可以树状数组维护差分数组,然后\(O(\log n)\)地单次查询单点值. ...

  6. Luogu 3934 Nephren Ruq Insania

    和Ynoi2016 炸脖龙重题了. BZOJ 5394. 首先是扩展欧拉定理: 一开始傻掉了……递归的层数和区间长度无关……也就是说我们每一次直接暴力递归求解子问题一定不会超过$logP$层,因为当模 ...

  7. [NOI2002]贪吃的九头龙(树形dp)

    [NOI2002]贪吃的九头龙 题目背景 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是 说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的 ...

  8. 龙之谷手游WebVR技术分享

    主要面向Web前端工程师,需要一定Javascript及three.js基础:本文主要分享内容为基于three.js开发WebVR思路及碰到的问题:有兴趣的同学,欢迎跟帖讨论. 目录:一.项目体验1. ...

  9. DX12龙书第6章习题

    1. { { , DXGI_FORMAT_R32G32B32_FLOAT, , , D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, }, { , DXGI_FO ...

随机推荐

  1. LcdTools如何使用PX01进行EDP屏EDID比对及设置显示EDID比对结果

    PX01点EDP屏在上电过程会自动读取屏EDID,那怎么进行EDID比对呢? LcdTools打开点屏工程,在上电时序函数中先用SetCmpEDID()指令设置EDID比对值,再调用CheckEDID ...

  2. Istio(五):使用服务网格Istio进行流量路由

    目录 一.模块概览 二.系统环境 三.简单路由 3.1 简单路由 四.Subset和DestinationRule 4.1 Subset 和 DestinationRule 4.2 Destinati ...

  3. 一、什么是celery

    一.什么是Celery 1.1.celery是什么 celery是一个简单.灵活且可靠的,处理大量消息的分布式系统,专注于是心爱处理的异步任务队列,同事也支持任务调度. Celery的架构由三部分组成 ...

  4. ES6 学习笔记(八)基本类型Symbol

    1.前言 大家都知道,在ES5的时候JavaScript的基本类型有Number.String.Boolean.undefined.object.Null共6种,在es6中,新增了Symbol类型,用 ...

  5. Codeforces Round #829 (Div. 2) D. Factorial Divisibility(数学)

    题目链接 题目大意: \(~~\)给定n个正整数和一个数k,问这n个数的阶乘之和能不能被k的阶乘整除 既:(a\(_{1}\)!+a\(_{2}\)!+a\(_{3}\)!+....+a\(_{n}\ ...

  6. 【笔记】CF1659E AND-MEX Walk 及相关

    题目传送门 位运算 设题目中序列 \(w_1,w_1\& w_2,w_1\& w_2\& w_3,\dots,w_1\& w_2\& \dots \& ...

  7. 关于phalcon框架中DI的理解

    DI(依赖注入) https://www.imooc.com/learn/867 https://www.imooc.com/learn/912

  8. 基于python的数学建模---灰色与模糊问题

    instance: 我们先对此数据集进行轮廓系数的计算 from sklearn import metrics import matplotlib.pyplot as plt from sklearn ...

  9. 解决一个mysql报错

    问题描述 insert into btsync (key,title) values ('a','b'); ERROR 1064 (42000): You have an error in your ...

  10. Task01:Matplotlib初相识

    一.明晰绘制一张图的组成条件 Figure:最基本的一级 Axes:在Figure上创建子图的容器(如果Figure中仅含一子图,则该容器可省略) Axis:用于处理子图上和坐标轴和网格相关的元素 T ...