《A First Course in Probability》-chaper1-组合分析-方程整数解的个数
在概率论问题中求解基本事件、某个事件的可能情况数要涉及到组合分析。
而这一部分主要涉及到简单的计数原理和二项式定理、多项式定理。
我们从一个简单的实例入手。
方程的整数解个数:
Tom喜欢钓鱼,一直他在r天中钓了n条鱼,设xi表示Tom第i天钓鱼的数目,这里我们,很显然时间是有序排列的,因此我们得到一个r元向量<x1,x2,x3……,xr>,那么满足上述条件,即x1+x2+x3+……+xr=n的r元组合、有多少个呢?
分析:首先我们刻意的将问题限制一下,假设每天Tom都不是空手而归,那么通过插板的方法,我们容易得到向量组的个数:

基于这个结论,我们去掉原来的限制,并设映射关系:yi = xi + 1,很明显,y1+y2+y3+……+yr=n+r的解向量个数,与x1+x2+x3+……+xr=n的解向量个数相同。那么我们很好的将一个变量(xi)可以为0的问题转化成了一个变量(yi)不可以为0的问题,利用上文给出的规律,我们容易得到向量组的个数:

有读者可能会问,这里为什么建立的映射关系一定是yi = xi + 1呢?如果是yi = xi + 2呢?最终的结果岂不就变了?那是因为,这里我们对yi的限制是正数,建立映射关系yi = xi + 1,那么xi的取值就是非负数,如果yi = xi + 2,那么xi将取得负数,这是和原来的问题性质不同了。
因此在这里我们能够将其归纳成如下的命题:

《A First Course in Probability》-chaper1-组合分析-方程整数解的个数的更多相关文章
- A - Character Encoding HDU - 6397 - 方程整数解-容斥原理
A - Character Encoding HDU - 6397 思路 : 隔板法就是在n个元素间的(n-1)个空中插入k-1个板,可以把n个元素分成k组的方法 普通隔板法 求方程 x+y+z=10 ...
- 方程整数解-2015省赛C语言A组第一题
方程整数解 方程: a^2 + b^2 + c^2 = 1000(或参见[图1.jpg])这个方程有整数解吗?有:a,b,c=6,8,30 就是一组解.你能算出另一组合适的解吗? 请填写该解中最小的数 ...
- P1098 方程解的个数
题目描述 给出一个正整数N,请你求出x+y+z=N这个方程的正整数解的组数(1<=x<=y<=z<1000).其中,1<=x<=y<=z<=N . 输入 ...
- [蓝桥杯2015初赛]方程整数解 unordered_map
unordered_map: 如果直接写报错加上tr1: #include<tr1/unordered_map>//注意写法 using namespace std; using name ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- vijos P1915 解方程 加强版
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- vijos1910解方程
描述 已知多项式方程: a0+a1x+a2x2+...+anxn=0a0+a1x+a2x2+...+anxn=0 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 格式 输入格式 输 ...
- 【poj1186】 方程的解数
http://poj.org/problem?id=1186 (题目链接) 题意 已知一个n元高次方程: 其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数 ...
随机推荐
- SlidingMenu侧换菜单的导入
对于Adt-22.3有一种使用SlidingMenu(侧滑菜单的方式),直接加你放到lib文件夹下
- oracle安装遇到的问题
这两天要做一个项目,教师招聘系统.要用oracle.就安装了oracle 12c,安装的过程中遇到了一些问题,最后自己解决了.我是win7系统. 第一个报错: [INS-30131]执行安装程序验证所 ...
- AFN的坑--NSCachedURLResponse缓存
网络正常的情况下,如果服务器宕机或者数据库出错,会造成访问服务器报错的情况,一般报错的内容是:无法连接到服务器或者其它错误.且服务器 修复后,仍然报错.经过排查,终于找出了原因所在:AFNetwork ...
- C#入门经典(第五版)学习笔记(三)
---------------面向对象编程简介--------------- UML表示方法: 1)方框上中下三分 2)上框写类名 3)中框写属性和字段,例如:+Description:string ...
- Java循环性能随笔
for iterator做迭代循环性能最好 然后是foreach 然后是提前声明好变量的for循环 最后是每次都要计算集合size的for package test; import j ...
- xubuntu14.04截图,彻底到Linux一个半月后记
前言 自学计算机技术,越到后面,越依赖ubuntu,以致于很多时候都是一开机就打开虚拟机上的ubuntu10.04,Linux已经变得越来越重要了. 2014-04-17,ubuntu14.0 ...
- underscorejs-size学习
2.24 size 2.24.1 语法: _.size(list) 2.24.2 说明: 返回列表的长度. 示例一:返回数组.对象.字符串的长度 //取数组的长度 var length length ...
- pkg-config相关的常用指令
pkg-config用途: 查询系统已安装库的基础信息(元信息) 1.查看所有的pkg-config库 pkg-config --list-all --list-all 列出pkg-config路径 ...
- openerp 产品图片的批量写入
Write a short python script which loops over the image files, encode with base64 and write to OpenER ...
- Java库使用----xstream1.3.1
package com.xstream; import java.util.Map; /** * XStream可以自动生成相关的xml配置 */ public class XstreamTest { ...