【JZOJ6388】小w的作业
description

analysis
二分一个角度,首先假设该弧度角\(\theta \in[{\pi \over 2},\pi]\),要找的直线斜率\(k\in(-∞,\tan\theta]\)
要找这种直线,两个点\((x_i,y_i),(x_j,y_j)\)构成一条直线,先钦定\(x_i≤x_j\)
直线斜率\({{y_j-y_i}\over{x_j-x_i}}≤\tan\theta\),转化后变成\(y_j-x_j\tan\theta≤y_i-x_i\tan\theta\)
因为两边分别只和\(i,j\)有关,可以把\(y_k-x_k\tan\theta\)记做\(yy_k\),\((x_i,y_i)\)映射到\((x_i,yy_i)\)
此时就是要求有多少对点\(x_i≤x_j,yy_i≥yy_j\),二维偏序,用树状数组解决
这种情况少计算了斜率为正的直线条数,需要把算少的这部分加起来
那么对于\(\theta\in[0,{\pi \over 2})\),计算斜率小于\(\tan\theta\)的直线条数过程是完全一样的
这种情况又多计算了斜率为负的直线条数,需要把算多的这部分减掉
经过一个点有多少条直线斜率为正,就是一个点右上角的点个数;斜率为负就是左上角的点个数
这个可以一开始用两次树状数组求出\(\sum\)右上角点个数和\(\sum\)左上角点个数
由于二分区间不同,这里左上角右上角求的范围有一点点差别,左上角必须严格高于该点,右上角则否
二分的时候判断当前在直线右手边的直线条数是否大于等于比较数,是则\(r\)右移,否则\(l\)左移
注意取开闭区间和计算的小细节
code
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define eps 1e-10
#define MAXN 100005
#define db double
#define ll long long
#define reg register ll
#define lowbit(x) ((x)&(-x))
#define pi 3.1415926535897932384626
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
ll tr[MAXN],sum[MAXN];
ll n,m,tot,summ1,summ2;
struct node
{
ll x,y;
}a[MAXN];
struct node1
{
db x;ll y,val;
}b[MAXN];
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline bool cmp(node a,node b){return a.x<b.x || (a.x==b.x && a.y>b.y);}
inline bool cmp1(node1 a,node1 b){return a.x<b.x;}
inline bool cmp2(node1 a,node1 b){return a.y<b.y;}
inline void insert(ll x){while (x<=n)++tr[x],x+=lowbit(x);}
inline ll query(ll x){ll y=0;while (x)y+=tr[x],x-=lowbit(x);return y;}
inline ll get(ll x,ll y){return query(y)-query(x-1);}
inline db binary(db m)
{
db l=0,r=pi,mid,tann;
while (r-l>eps)
{
mid=(l+r)/2.0,tann=tan(mid);
memset(tr,0,sizeof(tr)),memset(sum,0,sizeof(sum));
fo(i,1,n)b[i].x=1.0*(a[i].y-a[i].x*tann),b[i].y=i;
sort(b+1,b+n+1,cmp1),tot=0;
fo(i,1,n)
{
b[i].val=++tot;
while (i<n && fabs(b[i].x-b[i+1].x)<eps)b[++i].val=tot;
}
sort(b+1,b+n+1,cmp2);ll total=0;
fd(i,n,1)total+=(sum[i]=get(1,b[i].val)),insert(b[i].val);
total+=(mid*2>pi?summ1:-summ2);
if (total>=m)r=mid;else l=mid;
}
return r;
}
int main()
{
//freopen("T2.in","r",stdin);
freopen("line.in","r",stdin);
freopen("line.out","w",stdout);
n=read(),m=n*(n-1)/2;
fo(i,1,n)a[i].x=read(),a[i].y=read();
sort(a+1,a+n+1,cmp);
fo(i,1,n)b[i].x=a[i].y,b[i].y=i;
sort(b+1,b+n+1,cmp1),tot=0;
fo(i,1,n)
{
b[i].val=++tot;
while (i<n && b[i].x==b[i+1].x)b[++i].val=tot;
}
sort(b+1,b+n+1,cmp2);
fd(i,n,1)summ1+=get(b[i].val,tot),insert(b[i].val);
memset(tr,0,sizeof(tr));
sort(a+1,a+n+1,cmp);
fo(i,1,n)b[i].x=a[i].y,b[i].y=i;
sort(b+1,b+n+1,cmp1),tot=0;
fo(i,1,n)
{
b[i].val=++tot;
while (i<n && b[i].x==b[i+1].x)b[++i].val=tot;
}
sort(b+1,b+n+1,cmp2);
fo(i,1,n)summ2+=get(b[i].val+1,tot),insert(b[i].val);
printf("%.13lf\n",m&1?binary((m+1)/2):(binary(m/2)+binary(m/2+1))/2);
return 0;
}
【JZOJ6388】小w的作业的更多相关文章
- XidianOJ 1076 小W喜欢的数字
题目描述 大家都知道,小W是一名大帅哥,当然比起Light还是有点儿差距的!帅气的小W认为0-9这些数字,只有1,3,5是完美的. 欲问小W为什么,小W总是说"帅哥,是不需要解释的" ...
- 武汉科技大学ACM :1008: 小t和小w
Problem Description 小t最近学了C语言,他想要在女朋友小w面前展示一下自己的能力,小w喜欢如样例所示的图形, 想让小t写一个程序来输出这样的图形,小t拿到后感觉有点困难,小t不想在 ...
- bzoj4665小w的喜糖 dp+容斥
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 120 Solved: 72[Submit][Status][Discuss] ...
- bzoj4665 小w的喜糖(dp+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 222 Solved: 130[Submit][Status][Discuss ...
- bzoj2441【中山市选】小W的问题
题目描述 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个“W”出来.具体来说,对于五个不同的点(x1, y1), (x2, y2), (x3, y3), ( ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- 【BZOJ4665】小w的喜糖 容斥+组合数
[BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...
- bzoj2441 [中山市选2011]小W的问题(debug中)
2441: [中山市选2011]小W的问题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 487 Solved: 186[Submit][Statu ...
- 小w的喜糖(candy)
小w的喜糖(candy) 题目描述 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每 ...
随机推荐
- POJ 3259 Wormholes Bellman题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- 2019-10-10-dotnet-新-sdk-style-项目格式的一些命名空间和引用
title author date CreateTime categories dotnet 新 sdk style 项目格式的一些命名空间和引用 lindexi 2019-10-10 10:6:46 ...
- ssh隧道实现端口转发
ssh隧道实现端口转发 本地转发 # 本地转发 ssh -g -f -N -L : root@ # -L 本地端口转发,转发172.16.1.1主机可以访问的资源,这里为转发172.16.1.2的80 ...
- React简单入门
各位圆友,新年好!!! 使用 React 的网页源码时,首先,最后一个 <script> 标签的 type 属性为 text/babel .这是因为 React 独有的 JSX 语法,跟 ...
- 安装php 在阿里云yum源的环境
yum -y install httpd mysql mysql-server php php-mysql postgresql postgresql-server php-postgresql ph ...
- springcloud -zuul(1-zuul的简单使用)
1.maven引入包 <dependency> <groupId>org.springframework.cloud</groupId> <artifactI ...
- 每天进步一点点-深度学习入门-基于Python的理论与实现 (2)
今天要补上两天的 不补了,新手,看的比较慢-- 手写识别例子跳过先 思考如何实现数字5的识别 三种方法: 训练数据:学习,寻找最优解 测试数据:评价模型能力. 损失函数:以损失函数为线索寻找自由权重参 ...
- 在vue中使用Element的message组件
在vue中使用Element的message组件 在vue文件中使用 this.$message({ message: "提示信息", type: "success&qu ...
- 【归档】Mysql大表归档
作为一个企业或者DBA,我们通常会有这种想法,数据是一个公司的核心命脉,应该需要永久保存,很多时候DBA和开发沟通的时候,开发人员也会这么告诉我们,这份数据非常重要,数据需要永久保存.然而,如果将数据 ...
- 后缀自动机模板——不同子串个数p2408
后缀自动机的入门博客 https://www.luogu.org/blog/Kesdiael3/hou-zhui-zi-dong-ji-yang-xie 有两种求法,分别对应了两种性质 #includ ...