cf--TV Subscriptions (Hard Version)
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output
The only difference between easy and hard versions is constraints.
The BerTV channel every day broadcasts one episode of one of the k TV shows. You know the schedule for the next n days: a sequence of integers a1,a2,…,an (1≤ai≤k), where ai is the show, the episode of which will be shown in i-th day.
The subscription to the show is bought for the entire show (i.e. for all its episodes), for each show the subscription is bought separately.
How many minimum subscriptions do you need to buy in order to have the opportunity to watch episodes of purchased shows d (1≤d≤n) days in a row? In other words, you want to buy the minimum number of TV shows so that there is some segment of d consecutive days in which all episodes belong to the purchased shows.
Input
The first line contains an integer t (1≤t≤10000) — the number of test cases in the input. Then t test case descriptions follow.
The first line of each test case contains three integers n,k and d (1≤n≤2⋅105, 1≤k≤106, 1≤d≤n). The second line contains n integers a1,a2,…,an (1≤ai≤k), where ai is the show that is broadcasted on the i-th day.
It is guaranteed that the sum of the values of n for all test cases in the input does not exceed 2⋅105.
Output
Print t integers — the answers to the test cases in the input in the order they follow. The answer to a test case is the minimum number of TV shows for which you need to purchase a subscription so that you can watch episodes of the purchased TV shows on BerTV for d consecutive days. Please note that it is permissible that you will be able to watch more than d days in a row.
Example
input
4
5 2 2
1 2 1 2 1
9 3 3
3 3 3 2 2 2 1 1 1
4 10 4
10 8 6 4
16 9 8
3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3
output
2
1
4
5
Note
In the first test case to have an opportunity to watch shows for two consecutive days, you need to buy a subscription on show 1 and on show 2. So the answer is two.
In the second test case, you can buy a subscription to any show because for each show you can find a segment of three consecutive days, consisting only of episodes of this show.
In the third test case in the unique segment of four days, you have four different shows, so you need to buy a subscription to all these four shows.
In the fourth test case, you can buy subscriptions to shows 3,5,7,8,9, and you will be able to watch shows for the last eight days.
思路:
刚开始看到这个题目时,想到了莫队的分块统计+埃筛,写完了一直在debug,然后看了学长的代码明白过来了,原来是这样做
t组输入样例,
n表示n个数,k表示着n个数中的最大值,d表示连续的几个数中不同的数字个数(不重复的数字个数)
我可以表示出第一个区间里符合题意的树,然后依次往下移动,知道所有的都找完
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <set>
using namespace std;
const int maxn = 1e6 + 10;
set<int> s;
map<int,int> mp;
int a[maxn];
int t,n,k,d;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> t;
while(t--){
mp.clear();
s.clear();
cin >> n >> k >> d;
for(int i = 1; i <= n; i++)
cin >> a[i];
for(int i = 1; i <= d; i++){
mp[a[i]]++;
s.insert(a[i]);
}
//左右边界找到,然后依次下移,利用的map的计数和set的去重
int l = 1, r = d,ans = s.size();
while(r < n){//等于不成立,因为里面有r++
mp[a[l]]--;//我是想要右移
if(mp[a[l]]==0)//没有的话,就可以删除
s.erase(a[l]);
l++;
r++;
s.insert(a[r]);//向右移动,插入
mp[a[r]]++;//这一步刚开时忘记写,
if(s.size() < ans)
ans = s.size();
}
cout << ans << endl;
}
return 0;
}
cf--TV Subscriptions (Hard Version)的更多相关文章
- CF1225B2 TV Subscriptions (Hard Version)
CF1225B2 TV Subscriptions (Hard Version) 洛谷评测传送门 题目描述 The only difference between easy and hard vers ...
- CF1225B1 TV Subscriptions (Easy Version)
CF1225B1 TV Subscriptions (Easy Version) 洛谷评测传送门 题目描述 The only difference between easy and hard vers ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)
链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...
- B2 - TV Subscriptions (Hard Version)
题目连接:https://codeforces.com/contest/1247/problem/B2 题解:双指针,,一个头,一个尾,头部进入,尾部退出,一开始先记录1到k,并记录每个数字出现的次数 ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法
B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...
- [CodeForces-1225B] TV Subscriptions 【贪心】【尺取法】
[CodeForces-1225B] TV Subscriptions [贪心][尺取法] 标签: 题解 codeforces题解 尺取法 题目描述 Time limit 2000 ms Memory ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- HBase 数据模型(Data Model)
HBase Data Model--HBase 数据模型(翻译) 在HBase中,数据是存储在有行有列的表格中.这是与关系型数据库重复的术语,并不是有用的类比.相反,HBase可以被认为是一个多维度的 ...
- OAF_文件系列5_实现OAF解析XML文件javax.xml.parsers(案例)
20150729 Created By BaoXinjian
随机推荐
- Intellij-Idea使用小细节
SpringMVC项目部署到tomcat中文乱码,tomcat的配置里面加上 -Dfile.encoding=UTF-8
- php设计模式之观察者模式实例代码
php提供的两个接口,一个被观察者接口SplSubject,一个或多个观察者接口SPLObserver,和一个可以储存对象的类SplObjectStorage.被观察者有三个方法,需要实现这三个方法, ...
- 题解【CodeForces1154A】Restoring Three Numbers
Description Polycarp has guessed three positive integers \(a\), \(b\) and \(c\). He keeps these numb ...
- 【资源分享】Gmod动态方框透视脚本
*----------------------------------------------[下载区]----------------------------------------------* ...
- 转载:reverb
https://blog.csdn.net/qiumingjian/article/details/43938687 https://blog.csdn.net/jsjwangmingmin/arti ...
- 【C语言】已知三角形三边长,求三角形面积
一. 数学基础: 已知三角形的三边,计算三角形面积,需要用到海伦公式: 即p=(a+b+c)/2 二. 算法: 输入三个边长,套用海伦公式计算面积,并输出. 可以先判断是否可以构成三角形,即任意两边之 ...
- 出现 HTTP Status 500 - Servlet.init() for servlet springmvc threw exception 异常
出现这种异常在网上搜了搜 ,大多数都是说jdk和tomcat版本的问题:而我前几天都是运行得好好的,今天就编写了代码一运行项目发现报了这个错误.后台仔细看了看错误信息.结果是在你的项目中有相同的req ...
- POJ2909_Goldbach's Conjecture(线性欧拉筛)
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...
- 利用ansible-playbook一键部署ELK(ElasticSearch,logstash and kibana)
一.部署前环境介绍: es集群5台(es01,es02,es03,es04,es05),logstash服务器1台(logstash2),kibana服务器1台(kibana2),模拟apache服务 ...
- springboot整合mybatis连接oracle
pom.xml: <!-- 链接:https://pan.baidu.com/s/1agHs5vWeXf90r3OEeVGniw 提取码:wsgm --> <dependency&g ...