The following is from Max Howell @twitter:

Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.

Now it's your turn to prove that YOU CAN invert a binary tree!

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node from 0 to N−1, and gives the indices of the left and right children of the node. If the child does not exist, a - will be put at the position. Any pair of children are separated by a space.

Output Specification:

For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.

Sample Input:

8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6

Sample Output:

3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1
思路:
  先找到根节点,数字r未出现,则r为根节点,因为根节点不是任何节点的子节点
  然后静态构造树
  再调用平常的层序遍历和中序遍历
  所谓的二叉树反转,就是原来先读左子树,再读右子树
  现在改为先读右子树,再读左子树
 #include <iostream>
#include <vector>
#include <queue>
using namespace std;
struct Node
{
int l, r;
};
int N, root[] = { };
Node tree[];
vector<int>lev, in;
void levelOrde(int t)
{
if (t == -)
return;
queue<int>q;
q.push(t);
while (!q.empty())
{
t = q.front();
q.pop();
lev.push_back(t);
if (tree[t].r != -)//先进右
q.push(tree[t].r);
if (tree[t].l != -)
q.push(tree[t].l);
}
}
void inOrder(int t)
{
if (t == -)
return;
inOrder(tree[t].r);
in.push_back(t);
inOrder(tree[t].l);
}
int main()
{
cin >> N;
char l, r;
for (int i = ; i < N; ++i)
{
cin >> l >> r;
if (l != '-')
{
tree[i].l = l - '';
root[l - ''] = -;//去除为根的可能性
}
else
tree[i].l = -;
if (r != '-')
{
tree[i].r = r - '';
root[r - ''] = -;//去除为根的可能性
}
else
tree[i].r = -;
}
for (int i = ; i < N; ++i)
{
if (root[i] == )
{
r = i;
break;//找到了根节点
}
}
levelOrde(r);
inOrder(r);
for (int i = ; i < N; ++i)
cout << lev[i] << (i == N - ? "" : " ");
cout << endl;
for (int i = ; i < N; ++i)
cout << in[i] << (i == N - ? "" : " ");
return ;
}

PAT甲级——A1102 Invert a Binary Tree的更多相关文章

  1. PAT甲级——1102 Invert a Binary Tree (层序遍历+中序遍历)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90577042 1102 Invert a Binary Tree ...

  2. PAT A1102 Invert a Binary Tree (25 分)——静态树,层序遍历,先序遍历,后序遍历

    The following is from Max Howell @twitter: Google: 90% of our engineers use the software you wrote ( ...

  3. A1102. Invert a Binary Tree

    The following is from Max Howell @twitter: Google: 90% of our engineers use the software you wrote ( ...

  4. PAT Advanced 1102 Invert a Binary Tree (25) [树的遍历]

    题目 The following is from Max Howell @twitter: Google: 90% of our engineers use the sofware you wrote ...

  5. 【PAT甲级】1110 Complete Binary Tree (25分)

    题意: 输入一个正整数N(<=20),代表结点个数(0~N-1),接着输入N行每行包括每个结点的左右子结点,'-'表示无该子结点,输出是否是一颗完全二叉树,是的话输出最后一个子结点否则输出根节点 ...

  6. PAT_A1102#Invert a Binary Tree

    Source: PAT A1102 Invert a Binary Tree (25 分) Description: The following is from Max Howell @twitter ...

  7. 1102 Invert a Binary Tree——PAT甲级真题

    1102 Invert a Binary Tree The following is from Max Howell @twitter: Google: 90% of our engineers us ...

  8. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  9. PAT 1102 Invert a Binary Tree[比较简单]

    1102 Invert a Binary Tree(25 分) The following is from Max Howell @twitter: Google: 90% of our engine ...

随机推荐

  1. Photoshop基础照片美化

    自从有了“ps”以后,很多事情变成了可能,你可以出现在任何你想在的地方.而最基本的美化照片的功能,我想是很多同学学习PS的初衷.当你掌握了这门技术,很多人会对你刮目相看!今天小编就和大家分享一下ps的 ...

  2. Spark RDD API(scala)

    1.RDD RDD(Resilient Distributed Dataset弹性分布式数据集)是Spark中抽象的数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简 ...

  3. 初学者学习PHP开发应该掌握的几段精华代码

    来自:http://hi.baidu.com/dckhello/item/d62b16d8994bf93449e1ddb0 经典循环例子 <HTML><HEAD><TIT ...

  4. iOS开发系列-iOS布局相关

    LayoutSubViews 需要在某个View调整子视图的位置时,可以重写. 以下情况会出发LayoutSubViews方法的调用 init初始化不会触发layoutSubviews,但是是用ini ...

  5. iOS进阶一OC对象的本质

    OC对象的本质 平时编写的Object-C代码,底层实现其实都是C/C++代码. 所以Objective-C的面向对象都是基于C/C++的数据结构实现的,OC对象内部可以容纳不同数据类型的数据,因此可 ...

  6. 2019-7-29-asp-dotnet-core-从-Frp-获取用户真实-IP-地址

    title author date CreateTime categories asp dotnet core 从 Frp 获取用户真实 IP 地址 lindexi 2019-07-29 08:28: ...

  7. 在egg.js中使用mongodb

    1.egg.js官网只推荐了mysqle,要用mongodb得另找资料.通过查找,大家都在用Mongoose连接,于是乎学习. 网站链接:https://www.npmjs.com/package/e ...

  8. 《parsing techniques》中文翻译和正则引擎解析技术入门

    http://parsing-techniques.duguying.net/ (中文版) https://swtch.com/~rsc/regexp/ https://blog.csdn.net/m ...

  9. Altera: set pin locations using tcl

    1, compile the project; 2, store current tcl settings: Project –> Generate Tcl File from Project- ...

  10. 三模数NTT模板

    求两个多项式的卷积对任意数p取模 两个好记的FNT模数: 5*2^25+1 7*2^26+1 原根都为3 //Achen #include<algorithm> #include<i ...