/**
dp求期望的题。
题意:一个软件有s个子系统,会产生n种bug。
某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
属于某种类型的概率是1/n。
解法:
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:
dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:
dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
**/
#include <cstdio>
#include <iostream> using namespace std; double dp[][]; int main()
{
int n, s, ns; cin >> n >> s;
ns = n*s;
dp[n][s] = 0.0;
for (int i = n; i >= ; i--)
for (int j = s; j >= ; j--)
{
if ( i == n && j == s ) continue;
dp[i][j] = ( ns + (n-i)*j*dp[i+][j] + i*(s-j)*dp[i][j+] + (n-i)*(s-j)*dp[i+][j+] )/( ns - i*j );
}
printf("%.4lf\n", dp[][]); return ;
}

概率dp poj2096的更多相关文章

  1. 概率dp入门

    概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...

  2. poj 2096 Collecting Bugs (概率dp 天数期望)

    题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...

  3. 概率dp小结

    好久之前学过,记得是一次亚洲区的前几天看了看概率dp,然后亚洲区就出了一道概率dp,当时虽然做上了,但是感觉有很多地方没懂,今天起早温习了一下,觉得很多地方茅塞顿开,果然学习的话早上效果最好了. 首先 ...

  4. 概率DP入门学习QAQ

    emmmm博客很多都烂尾了...但是没空写..先写一下正在学的东西好了 概率DP这东西每次考到都不会..听题解也是一脸懵逼..所以决定学习一下这个东东..毕竟NOIP考过...比什么平衡树实在多了QA ...

  5. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  6. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  7. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  8. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  9. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

随机推荐

  1. layer.open获取弹出层的input框的值

    使用top.$('#txtReason').val();获取值: //不通过 function unAuditData(id) { parent.layer.open({ type: , title: ...

  2. Ubuntu16.04突然断网

    配置文件: sudo gedit /etc/network/interfaces 重启网络: 1.sudo /etc/init.d/networking restart 2.sudo service ...

  3. Could not connect to SMTP host: smtp.qq.com, port: 465, response: -1 SpringBoot发送邮件

    解决方案 换端口 QQ邮箱可以把端口换成587 设置属性 spring.mail.properties.mail.smtp.ssl.enable=true 原因 465端口是为SMTPS(SMTP-o ...

  4. VS Code中Ionic serve命令 执行跳出的问题

    项目情况:用vscode编写的ionic(tab类型)项目(具体使用到的技术Angular\Typescrip\Ionic) 具体情况如下: 找到的可能原因: 出错的项目情况:在一个ts文件中编写两个 ...

  5. Ora-00906:missing left parenthesis

    问题描述 Ora-00906:missing left parenthesis 问题原因 varchar和varchar2  必须指定长度,不然会报错

  6. Win10下Pytorch和配置和安装

    Pytorch的安装 注意:Pytorch的版本,cuda版本,cudnn版本,Python版本,nvidia驱动版本要相互对应,否则就会出现各种报错和问题,无法使用GPU加速计算! 查看nvida驱 ...

  7. JDBC——PreparedStatement执行SQL的对象

    Statement的子接口,预编译SQL,动态SQL 功能比爹强大 用来解决SQL注入的 预编译SQL:参数使用?作为占位符,执行SQL的时候给?赋上值就可以了 使用步骤: 1.导入驱动jar包 复制 ...

  8. [CodeIgniter4]故障排除和本地开发服务器

    故障排除 以下是一些常见的安装问题,以及建议的解决方法. 我必须在我的URL中包含index.php 如果``/mypage/find/apple``类似的URL``/index.php/mypage ...

  9. 剑指offer 62. 二叉搜索树的第 k 个结点

    62. 二叉搜索树的第 k 个结点 题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. 法一: 非递归中序 ...

  10. IntelliJ IDEA构建多Module项目

    打开IDEA 创建完成项目后,我们创建子模块 可以看到common子模块创建成功,子模块的名字大家可以根据自己的实际需求来修改 下面我们再创建子模块 给子模块起个名字 现在已经创建好多模块的项目了,下 ...