概率dp poj2096
/**
dp求期望的题。
题意:一个软件有s个子系统,会产生n种bug。
某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
属于某种类型的概率是1/n。
解法:
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:
dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:
dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
**/
#include <cstdio>
#include <iostream> using namespace std; double dp[][]; int main()
{
int n, s, ns; cin >> n >> s;
ns = n*s;
dp[n][s] = 0.0;
for (int i = n; i >= ; i--)
for (int j = s; j >= ; j--)
{
if ( i == n && j == s ) continue;
dp[i][j] = ( ns + (n-i)*j*dp[i+][j] + i*(s-j)*dp[i][j+] + (n-i)*(s-j)*dp[i+][j+] )/( ns - i*j );
}
printf("%.4lf\n", dp[][]); return ;
}
概率dp poj2096的更多相关文章
- 概率dp入门
概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...
- poj 2096 Collecting Bugs (概率dp 天数期望)
题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...
- 概率dp小结
好久之前学过,记得是一次亚洲区的前几天看了看概率dp,然后亚洲区就出了一道概率dp,当时虽然做上了,但是感觉有很多地方没懂,今天起早温习了一下,觉得很多地方茅塞顿开,果然学习的话早上效果最好了. 首先 ...
- 概率DP入门学习QAQ
emmmm博客很多都烂尾了...但是没空写..先写一下正在学的东西好了 概率DP这东西每次考到都不会..听题解也是一脸懵逼..所以决定学习一下这个东东..毕竟NOIP考过...比什么平衡树实在多了QA ...
- 动态规划之经典数学期望和概率DP
起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
随机推荐
- bfs(队列模板)
[题目描述] 当你站在一个迷宫里的时候,往往会被错综复杂的道路弄得失去方向感,如果你能得到迷宫地图,事情就会变得非常简单. 假设你已经得到了一个n*m的迷宫的图纸,请你找出从起点到出口的最短路. [输 ...
- Hdu2097 Sky数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2097 Problem Description Sky从小喜欢奇特的东西,而且天生对数字特别敏感,一次偶 ...
- Quartz.NET 2.x教程
第1课:使用Quartz第2课:工作和触发器第3课:关于工作和JobDetails的更多信息第4课:有关触发器的更多信息第5课:SimpleTriggers第6课:CronTriggers第7课:Tr ...
- window.resizeTo
概述 动态调整窗口的大小. 语法 window.resizeTo(aWidth, aHeight) 参数 aWidth 是一个整数,表示新的 outerWidth(单位:像素)(包括滚动条.窗口边框等 ...
- Docker学习一篇就够了
Docker 1.简介 Docker是一个开源的应用容器引擎:是一个轻量级容器技术: Docker支持将软件编译成一个镜像:然后在镜像中各种软件做好配置,将镜像发布出去,其他使用者可以直接使用这个镜像 ...
- Test Blog
计算机实习报告 姓名:王方正 学号:20174314 一.开发任务 题目源自<程序设计实践教程>教材22题,学生基本信息管理.描述略. 二.需求分析 1.说明自己针对这个任务将完成哪些功能 ...
- js中的window.location.search的用法与作用。
用该属性获取页面 URL 地址: window.location 对象所包含的属性 属性 描述 hash 从井号 (#) 开始的 URL(锚) host 主机名和当前 URL 的端口号 hostnam ...
- 算法竞赛入门经典第二版 蛇形填数 P40
#include<bits/stdc++.h> using namespace std; #define maxn 20 int a[maxn][maxn]; int main(){ ; ...
- 洛谷P1071 潜伏者
https://www.luogu.org/problem/P1071 #include<bits/stdc++.h> using namespace std; map<char,c ...
- Python2安装MySQLdb
在http://www.lfd.uci.edu/~gohlke/pythonlibs/#mysql-python下载对应的包版本,如果是win7 64位2.7版本的python,就下载 MySQL_p ...