\[\text{Preface}
\]

算是一道思维难度稍易,代码难度稍难的题吧。

\[\text{Description}
\]

给出一张 \(n\) 个点,\(m\) 条边的图,点带权。需要支持三个操作:

  • D x 删掉编号为 \(x\) 的边
  • Q x k 查询与节点 \(x\) 联通的所有节点中,点权第 \(k\) 大节点的点权
  • C x v 将节点 \(x\) 点权改为 \(v\)

多组数据,每组数据最终需要输出所有查询的平均值 ( 保留 6 位 ) ,没有强制在线。

\[\text{Solution}
\]

不知道大家有没有做过 这道题 ,推荐先去做一下。

\(~\)

首先,对于同一个连通块里的所有节点,查询与任意一个节点连通的所有节点的第 \(k\) 大,都是查询该连通块里所有节点的第 \(k\) 大。已经很明显可以用并查集维护每个连通块的代表节点,再在这个代表节点上用一个数据结构维护连通块信息,支持合并,查询第 \(k\) 大。

我们发现权值线段树可以做到上述操作,尝试用权值线段树维护,每个节点开一个权值线段树。

\(~\)

对于操作 Q x k \(:\)

​ ​ ​ ​ 权值线段树基本操作。

对于操作 C x v \(:\)

​​ ​ ​ ​ 我们可以看作是在 \(x\) 这个位置上少了一个原来的点权,再多了一个新的点权,两次插入操作即可解决。

对于操作 D x \(:\)

​ ​ ​ ​ \(......\) ,我们发现删掉一条边,不能有效使得一个连通块分裂成两个连通块,并且维护权值线段树。

\(~\)

注意到此题 没有强制在线 ,意味着,我们可以离线地把所有操作都读进来,然后去反着考虑这些询问。

这样一来,D x 操作就可以变为 \(:\) 加入一条编号为 \(x\) 的边。其余的两个操作不变。

我们发现添加一条边很容易维护 \(:\) 找出 \(u,v\) 所在的连通块 \(p,q\) ,若 \(p=q\) ,则无需操作;否则合并权值线段树 \(p\) 和权值线段树 \(q\) ,然后令 \(fa[q]=p\) 。

综上所述,我们就可以用 权值线段树 \(+\) 并查集 解决本题了。\((\) 当然什么 \(splay\),\(treap\) 启发式合并也行 \()\)

时空复杂度 \(\text{O(n log n)}\) 。

\[\text{Code}
\]

#include<cstdio>
#include<cstring> #define RI register int using namespace std; inline int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-f;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
return x*f;
} const int N=6000100,M=6000100,Q=6000100,MLOGN=50000000; const int INF=1e6; int T;
int n,m,q; int cnt;
long double ans; int val[N]; struct Edge{
int u;
int v;
bool del;
}e[M]; char opt[Q];
int x[Q],k[Q]; int fa[N]; int get(int x)
{
if(fa[x]==x)return x;
return fa[x]=get(fa[x]);
} int tot,root[N];
struct SegmentTree{
int lc,rc;
int cnt;
}t[MLOGN]; int New()
{
tot++;
t[tot].lc=t[tot].rc=t[tot].cnt=0;
return tot;
} void insert(int &p,int l,int r,int delta,int val)
{
if(!p)
p=New();
t[p].cnt+=val;
if(l==r)return;
int mid=(l+r)>>1;
if(delta<=mid)
insert(t[p].lc,l,mid,delta,val);
else
insert(t[p].rc,mid+1,r,delta,val);
} int merge(int p,int q)
{
if(!p||!q)
return p^q;
t[p].cnt+=t[q].cnt;
t[p].lc=merge(t[p].lc,t[q].lc);
t[p].rc=merge(t[p].rc,t[q].rc);
return p;
} int ask(int p,int l,int r,int k)
{
if(l==r)
return l;
int mid=(l+r)>>1;
int rcnt=t[t[p].rc].cnt;
if(k<=rcnt)
return ask(t[p].rc,mid+1,r,k);
else
return ask(t[p].lc,l,mid,k-rcnt);
} void link(int u,int v)
{
u=get(u),v=get(v); if(u==v)return; root[u]=merge(root[u],root[v]);
fa[v]=u;
} void work()
{
tot=cnt=ans=q=0;
memset(root,0,sizeof(root)); for(RI i=1;i<=n;i++)
val[i]=read(); for(RI i=1;i<=m;i++)
e[i].u=read(),e[i].v=read(); char tmp[2];
while(scanf("%s",tmp),tmp[0]!='E')
{
opt[++q]=tmp[0];
switch(tmp[0])
{
case 'D':{ x[q]=read();
e[x[q]].del=true; break;
} case 'Q':{ x[q]=read(),k[q]=read();
cnt++; break;
} case 'C':{ x[q]=read(),k[q]=val[x[q]],val[x[q]]=read(); break;
}
}
} for(RI i=1;i<=n;i++)
fa[i]=i,insert(root[i],-INF,INF,val[i],1); for(RI i=1;i<=m;i++)
{
if(e[i].del)continue;
link(e[i].u,e[i].v);
} for(RI i=q;i>=1;i--)
switch(opt[i])
{
case 'D':{ e[x[i]].del=false;
link(e[x[i]].u,e[x[i]].v); break;
} case 'Q':{ int p=get(x[i]); int A=ask(root[p],-INF,INF,k[i]); if(A==-INF||A==INF)
continue; ans+=(long double)A/cnt; break;
} case 'C':{ int p=get(x[i]); insert(root[p],-INF,INF,val[x[i]],-1);
val[x[i]]=k[i];
insert(root[p],-INF,INF,val[x[i]],1); break;
}
} printf("Case %d: %Lf\n",++T,ans);
} int main()
{
while(n=read(),m=read(),n&&m) work(); return 0;
}

\[\text{Thanks} \ \text{for} \ \text{watching}
\]

题解 UVA1479 【Graph and Queries】的更多相关文章

  1. UVA1479 Graph and Queries

    思路 恶心人的题目 还是类似永无乡一题的Treap启发式合并思路 但是由于加边变成了删边 所以应该离线后倒序处理 数组要开够 代码 #include <cstdio> #include & ...

  2. HDU 3726 Graph and Queries 平衡树+前向星+并查集+离线操作+逆向思维 数据结构大综合题

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. [la P5031&hdu P3726] Graph and Queries

    [la P5031&hdu P3726] Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: ...

  4. HDU 3726 Graph and Queries (离线处理+splay tree)

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. HDU 3726 Graph and Queries treap树

    题目来源:HDU 3726 Graph and Queries 题意:见白书 思路:刚学treap 參考白皮书 #include <cstdio> #include <cstring ...

  6. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  7. CF1416D Graph and Queries

    本题解用于作者加深算法印象,也欢迎各位的阅读. 题目大意 给你一张无向图,并给你两种操作: \(1~v\) :找到当前点 \(v\) 所在的联通块内权值最大的点,输出该点权值并将其权值改为 \(0\) ...

  8. UVALive5031 Graph and Queries(Treap)

    反向操作,先求出最终状态,再反向操作. 然后就是Treap 的合并,求第K大值. #include<cstdio> #include<iostream> #include< ...

  9. UVa 1479 (Treap 名次树) Graph and Queries

    这题写起来真累.. 名次树就是多了一个附加信息记录以该节点为根的树的总结点的个数,由于BST的性质再根据这个附加信息,我们可以很容易找到这棵树中第k大的值是多少. 所以在这道题中用一棵名次树来维护一个 ...

随机推荐

  1. mybatis两种方式

    // 1.传统的使用 statementId方式 //获取详情 sysApiDocumentMode = template.selectOne("oaApiDocument.getProje ...

  2. 【Java基础总结】字符串

    1. java内存区域(堆区.栈区.常量池) 2. String length() //长度 //获取子串位置 indexOf(subStr) lastIndexOf(subStr) //获取子串 c ...

  3. cogs 647. [Youdao2010] 有道搜索框 Trie树 字典树

    647. [Youdao2010] 有道搜索框 ★☆   输入文件:youdao.in   输出文件:youdao.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 在有 ...

  4. 【LC_Lesson3】---回文数的判别

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...

  5. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. go微服务框架kratos学习笔记七(kratos warden 负载均衡 balancer)

    目录 go微服务框架kratos学习笔记七(kratos warden 负载均衡 balancer) demo demo server demo client 池 dao service p2c ro ...

  7. 深入理解Java虚拟机-类加载连接和初始化解析

    不管学习什么,我一直追求的是知其然,还要知其所以然,对真理的追求可以体现在方方面面.人生短短数十载,匆匆一世似烟云,我认为,既然来了,就应该留下一些有意义的东西.本系列文章是结合张龙老师的<深入 ...

  8. python sys.modules 和 sys.path 及 __name__

    1.sys.modules 存放已经缓存的模块 值是dict 2.sys.path 搜索路径 值是list 3.if __name__= __main__ 可以看成python的程序入口,如果直接执行 ...

  9. http的异步请求

    需要用到的包(包版本应该可能不同): httpcore-4.1.4.jar httpsayncclient-4.0-alpha3.jar httpcore-nio-4.2-alpha3.jar /** ...

  10. [洛谷P3621] [APIO2007] 风铃

    Description 你准备给弟弟 Ike 买一件礼物,但是,Ike 挑选礼物的方式很特别:他只喜欢那些能被他排成有序形状的东西. 你准备给 Ike 买一个风铃.风铃是一种多层的装饰品,一般挂在天花 ...