Treats for the Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6568   Accepted: 3459

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

Source

 
  • 最开始想的是贪心
  • 每次取两端最小的,这样把大的留在最后,总和最大
  • 但是WA
  • 原因在于贪心的局限性上,我们不能保证这样的贪心策略在应对诸如当前右端比左端大但是右端第二个数比两端点都小的情况下怎样取舍的情形下怎样做
  • 所以还是应该dp
  • 不难看出每一个点在双端队列中的出队顺序排除开始的两端是1到n,其他的都是2到n,所以我们在确定一定区间的最优值之后可以向两边递推
 #include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long LL ;
typedef unsigned long long ULL ;
const int maxn = 2e3 + ;
const int inf = 0x3f3f3f3f ;
const int npos = - ;
const int mod = 1e9 + ;
const int mxx = + ;
const double eps = 1e- ;
const double PI = acos(-1.0) ; int dp[maxn][maxn], a[maxn], n;
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(~scanf("%d",&n)){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
dp[i][]=a[i]*n;
}
for(int j=;j<n;j++)
for(int i=n-j;i>;i--)
dp[i][j]=max(dp[i][j-]+a[i+j]*(n-j),dp[i+][j-]+a[i]*(n-j));
printf("%d\n",dp[][n-]);
}
return ;
}

POJ_3186_Treats for the Cows的更多相关文章

  1. [LeetCode] Bulls and Cows 公母牛游戏

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  2. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  3. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  4. LeetCode 299 Bulls and Cows

    Problem: You are playing the following Bulls and Cows game with your friend: You write down a number ...

  5. [Leetcode] Bulls and Cows

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  6. 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列

    第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...

  7. POJ2186 Popular Cows [强连通分量|缩点]

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31241   Accepted: 12691 De ...

  8. Poj2186Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31533   Accepted: 12817 De ...

  9. [poj2182] Lost Cows (线段树)

    线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...

随机推荐

  1. Java查看类的成员

    在一个类的内部,一般包括以下几类成员:成员变量.构造方法.普通方法和内部类等.使用反射机制可以在无法查看源代码的情况下查看类的成员.编写程序,使用反射机制查看ArrayList类中定义的成员变量.构造 ...

  2. iOS Ad hoc

    There's one situation in which you need an Ad Hoc profile, and that's when you want to test Push Not ...

  3. 在CentOS Linux下部署Activemq 5

    准备:安装之前首先安装jdk-1.7.x及以上版本 配置/etc/sysconfig/network文件 和/etc/hosts文件,把主机名的解析做清楚: 如: # cat /etc/sysconf ...

  4. 为啥RESTFULL如此重要?

    为啥RESTFULL如此重要? 2014-6-3 20:13| 发布者: admin| 查看: 57| 评论: 0|来自: java365 摘要: 本文我们将讨论REST,它定义了一组体系架构原则,您 ...

  5. MyBatis中Like语句使用总结

    原生写法 eg: select * from user where username like '%${value}%' 注意:     ${value}里面必须要写value,不然会报错 oracl ...

  6. [转载]WebConfig配置文件详解

    <?xml version="1.0"?> <!--注意: 除了手动编辑此文件以外,您还可以使用 Web 管理工具来配置应用程序的设置.可以使用 Visual S ...

  7. <转>特征工程(一)

    转自http://blog.csdn.net/han_xiaoyang/article/details/50481967 1. 引言 再过一个月就是春节,相信有很多码农就要准备欢天喜地地回家过(xia ...

  8. delphixe10 android操作 打电话,摄像头,定位等

    XE6 不支持JStringToString.StringTojString.StrToJURI:use Androidapi.Helpers //Splash Image Delphi XE5,XE ...

  9. 转载->C#中的委托的使用和讲解

    C# 中的委托 引言 委托 和 事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易.它们就像是一道槛儿,过了这个槛的人,觉得真是太容 ...

  10. Delete触发器