Identity Monad

newtype Identity a = Identity { runIdentity :: a }

instance Functor Identity where
fmap = coerce instance Applicative Identity where
pure = Identity
(<*>) = coerce instance Monad Identity where
m >>= k = k (runIdentity m)
  • newtype Identity a = Identity { runIdentity :: a }

    Identity 类型是个 newtype,也就是对现有类型的封装。该类型只有一个类型参数 a。

    Identity a 封装了一个值:a,用 runIdentity 字段可以取出这个值。

    Identity 是一个用于占位的 Monad。

  • instance Monad Identity where

    对比 Monad 类型类的定义,可知 return 函数的类型签名为:

    return :: Identity a

    而 bind 函数的类型签名为:

    (>>=) :: a -> (a -> Identity b) -> Identity b

  • m >>= k = k (runIdentity m)

证明 Identity 符合Monad法则:
1. return a >>= f ≡ f a
return a >>= f ≡ Identity a >>= f ≡ f (runIdentity (Identity a)) ≡ f a
2. m >>= return ≡ m
m >>= return ≡ (Identity a) >> Identity ≡ Identity (runIdentity (Identity a)) ≡ Identity a ≡ m
3. (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
(m >>= f) >>= g
≡ ((Identity a) >>= f) >>= g
≡ f (runIdentity (Identity a)) >> = g
≡ f a >> g
m >>= (\x -> f x >>= g)
≡ (Identity a) >>= (\x -> f x >>= g)
≡ (\x -> f x >>= g) (runIdentity (Identity a))
≡ (\x -> f x >>= g) a
≡ f a >> g

IdentityT Monad转换器

newtype IdentityT f a = IdentityT { runIdentityT :: f a }

instance (Monad m) => Monad (IdentityT m) where
return = IdentityT . return
m >>= k = IdentityT $ runIdentityT . k =<< runIdentityT m instance MonadTrans IdentityT where
lift = IdentityT instance (MonadIO m) => MonadIO (IdentityT m) where
liftIO = IdentityT . liftIO
  • newtype IdentityT f a = IdentityT { runIdentityT :: f a }

    IdentityT 类型是个 newtype,也就是对现有类型的封装。该类型有两个类型参数:内部 Monad 类型参数 f,以及值类型参数 a。

    IdentityT f 类型封装了一个封装在内部 Monad f 中的值:f a,用 runIdentity 字段可以取出这个值。

    Identity 是一个用于占位的 Monad转换器。

  • instance (Monad m) => Monad (IdentityT m) where

    如果 m 是个 Monad,那么 IdentityT m 也是一个 Monad。

    对比 Monad 类型类的定义,可知 return 函数的类型签名为:

    return :: IdentityT m a

    而 bind 函数的类型签名为:

    (>>=) :: a -> (a -> IdentityT m b) -> IdentityT m b

  • m >>= k = IdentityT $ runIdentityT . k =<< runIdentityT m

证明 IdentityT 符合Monad法则:
1. return a >>= f ≡ f a
return a >>= f
≡ (IdentityT . return) a >>= f
≡ IdentityT (m a) >>= f
≡ IdentityT $ runIdentityT . f =<< runIdentityT (IdentityT (m a))
≡ IdentityT $ runIdentityT . f =<< m a
≡ IdentityT $ runIdentityT (f a)
≡ f a
2. m >>= return ≡ m
假设 m = IdentityT (n a)
m >>= return
≡ IdentityT $ runIdentityT . return =<< runIdentityT m
≡ IdentityT $ runIdentityT . (IdentityT . return) =<< runIdentityT (IdentityT (n a))
≡ IdentityT $ runIdentityT . (IdentityT . return) =<< n a
≡ IdentityT $ runIdentityT (IdentityT (n a))
≡ IdentityT (n a) ≡ m
3. (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
(m >>= f) >>= g
≡ (IdentityT $ runIdentityT . f =<< runIdentityT m) >>= g
≡ IdentityT $ runIdentityT . g =<< runIdentityT (IdentityT $ runIdentityT . f =<< runIdentityT m)
≡ IdentityT $ runIdentityT . g =<< (runIdentityT . f =<< runIdentityT m)
≡ IdentityT $ (runIdentityT m >>= runIdentityT . f) >>= runIdentityT . g
m >>= (\x -> f x >>= g)
≡ IdentityT $ runIdentityT . (\x -> f x >>= g) =<< runIdentityT m
≡ IdentityT $ runIdentityT . (\x -> IdentityT $ runIdentityT . g =<< runIdentityT (f x)) =<< runIdentityT m
≡ IdentityT $ (\x -> runIdentityT $ IdentityT $ runIdentityT . g =<< runIdentityT (f x)) =<< runIdentityT m
≡ IdentityT $ (\x -> runIdentityT . g =<< runIdentityT (f x)) =<< runIdentityT m
≡ IdentityT $ runIdentityT m >>= (\x -> runIdentityT (f x) >>= runIdentityT . g)
根据内部 Monad 的法则:(m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
IdentityT $ (runIdentityT m >>= runIdentityT . f) >>= runIdentityT . g
≡ IdentityT $ runIdentityT m >>= (\x -> (runIdentityT . f) x >>= runIdentityT . g)
≡ IdentityT $ runIdentityT m >>= (\x -> runIdentityT (f x) >>= runIdentityT . g)
证明 StateT 中 lift 函数的定义符合 lift 的法则。
1. lift . return ≡ return
lift . return $ a
≡ IdentityT (m a)
≡ return a
2. lift (m >>= f) ≡ lift m >>= (lift . f)
假设 m = n a 并且 f a = n b
于是 m >>= f = n b
lift (m >>= f)
≡ lift (n b)
≡ IdentityT (n b)
lift m >>= (lift . f)
≡ IdentityT (n a) >>= (\x -> lift . f $ x)
≡ IdentityT $ runIdentityT . IdentityT . f =<< runIdentityT (IdentityT (n a))
≡ IdentityT $ n a >>= f
≡ IdentityT (f a)
≡ IdentityT (n b)

Haskell语言学习笔记(26)Identity, IdentityT的更多相关文章

  1. Haskell语言学习笔记(88)语言扩展(1)

    ExistentialQuantification {-# LANGUAGE ExistentialQuantification #-} 存在类型专用的语言扩展 Haskell语言学习笔记(73)Ex ...

  2. Haskell语言学习笔记(79)lambda演算

    lambda演算 根据维基百科,lambda演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义.函数如何被应用以 ...

  3. Haskell语言学习笔记(69)Yesod

    Yesod Yesod 是一个使用 Haskell 语言的 Web 框架. 安装 Yesod 首先更新 Haskell Platform 到最新版 (Yesod 依赖的库非常多,版本不一致的话很容易安 ...

  4. Haskell语言学习笔记(20)IORef, STRef

    IORef 一个在IO monad中使用变量的类型. 函数 参数 功能 newIORef 值 新建带初值的引用 readIORef 引用 读取引用的值 writeIORef 引用和值 设置引用的值 m ...

  5. Haskell语言学习笔记(39)Category

    Category class Category cat where id :: cat a a (.) :: cat b c -> cat a b -> cat a c instance ...

  6. Haskell语言学习笔记(72)Free Monad

    安装 free 包 $ cabal install free Installed free-5.0.2 Free Monad data Free f a = Pure a | Free (f (Fre ...

  7. Haskell语言学习笔记(44)Lens(2)

    自定义 Lens 和 Isos -- Some of the examples in this chapter require a few GHC extensions: -- TemplateHas ...

  8. Haskell语言学习笔记(38)Lens(1)

    Lens Lens是一个接近语言级别的库,使用它可以方便的读取,设置,修改一个大的数据结构中某一部分的值. view, over, set Prelude> :m +Control.Lens P ...

  9. Haskell语言学习笔记(30)MonadCont, Cont, ContT

    MonadCont 类型类 class Monad m => MonadCont m where callCC :: ((a -> m b) -> m a) -> m a in ...

随机推荐

  1. spring 自带框架及可替换框架

    spring 自带框架 可替换框架 (可替换框架)是否推荐使用 spring security shiro 推荐使用 spring aop aspectj 集成aspectj使用 Shiro 对比 S ...

  2. R(7): data.table

    这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时 ...

  3. hyperledger fabric各类节点及其故障分析

    1.Client节点 client代表由最终用户操作的实体,它必须连接到某一个peer节点或者orderer节点上与区块链网络通信.客户端向endorser提交交易提案,当收集到足够背书后,向排序服务 ...

  4. 在C#客户端用HTTP上传文件到Java服务器

    在C#客户端用HTTP上传文件到Java服务器  来源:http://www.cnblogs.com/AndyDai/p/5135294.html 最近在做C / S 开发,需要在C#客户端上传文件到 ...

  5. CentOS Linux解决Device eth0 does not seem to be present 但是没有发现eth1

    http://www.linuxidc.com/Linux/2012-12/76248.htm 此标题已经是有人写过的了.但是为什么拿来重写? 我复制完,没有发现有eth1这个网卡 为什么呢?需要选中 ...

  6. android 关于 webview 控制其它view的显示 以及更改view数据失败的问题总结

    总结: 1.webview 无法直接更改view的属性,可以通过 handler实现,因为跨线程 2.webview可以通过js api读取 view的属性值 代码: private Handler ...

  7. ELK高可用搭建---Elasticsearch配置(1)

    ########################ElasticSearch#######################环境:192.168.125.200   elasticsearch+logst ...

  8. CAP原理和BASE思想--GLQ

    分布式领域CAP理论,Consistency(一致性), 数据一致更新,所有数据变动都是同步的Availability(可用性), 好的响应性能Partition tolerance(分区容忍性) 可 ...

  9. Kubernetes集群安全配置案例

    Kubernetes 系统提供了三种认证方式:CA 认证.Token 认证 和 Base 认证.安全功能是一把双刃剑,它保护系统不被攻击,但是也带来额外的性能损耗.集群内的各组件访问 API Serv ...

  10. zufeoj Electrification Plan (最小生成树,巧妙设e[i][j]=0)

    Electrification Plan 时间限制: 1 Sec  内存限制: 128 MB提交: 31  解决: 13[提交][状态][讨论版] 题目描述 Some country has n ci ...