Kosaraju 算法
Kosaraju 算法
一.算法简介
在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量。它利用了一个事实,逆图(与各边方向相同的图形反转, transpose graph)有相同的强连通分量的原始图。
有关强连通分量的介绍在之前Tarjan 算法中:Tarjan Algorithm
逆图(Tranpose Graph ):
我们对逆图定义如下:
GT=(V, ET),ET={(u, v):(v, u)∈E}}

上图是有向图G , 和图G的逆图 GT
摘录维基百科上对Kosaraju Algorithm 的描述:
(取自https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm)
- For each vertex u of the graph, mark u as unvisited. Let L be empty.
- For each vertex u of the graph do Visit(u), where Visit(u) is the recursive subroutine:
- If u is unvisited then:
- Mark u as visited.
- For each out-neighbour v of u, do Visit(v).
- Prepend u to L.
- Otherwise do nothing.
- If u is unvisited then:
- For each element u of L in order, do Assign(u,u) where Assign(u,root) is the recursive subroutine:
- If u has not been assigned to a component then:
- Assign u as belonging to the component whose root is root.
- For each in-neighbour v of u, do Assign(v,root).
- Otherwise do nothing.
- If u has not been assigned to a component then:
通过以上的描述我们发现,Kosaraju 算法就是分别对原图G 和它的逆图 GT 进行两遍DFS,即:
1).对原图G进行深度优先搜索,找出每个节点的完成时间(时间戳)
2).选择完成时间较大的节点开始,对逆图GT 搜索,能够到达的点构成一个强连通分量
3).如果所有节点未被遍历,重复2). ,否则算法结束;
二.算法图示

上图是对图G,进行一遍DFS的结果,每个节点有两个时间戳,即节点的发现时间u.d和完成时间u.f
我们将完成时间较大的,按大小加入堆栈

1)每次从栈顶取出元素
2)检查是否被访问过
3)若没被访问过,以该点为起点,对逆图进行深度优先遍历
4)否则返回第一步,直到栈空为止

[ATTENTION] : 对逆图搜索时,从一个节点开始能搜索到的最大区块就是该点所在的强连通分量。
从节点1出发,能走到 2 ,3,4 , 所以{1 , 2 , 3 , 4 }是一个强连通分量
从节点5出发,无路可走,所以{ 5 }是一个强连通分量
从节点6出发,无路可走,所以{ 6 }是一个强连通分量
自此Kosaraju Algorithm完毕,这个算法只需要两遍DFS即可,是一个比较易懂的求强连通分量的算法。
STRONG-CONNECTED-COMPONENTS ( GRAPH G )
1 call DFS(G) to compute finishing times u.f for each vertex u
2 compute GT
3 call DFS (GT) , but in the main loop of DFS , consider the vertices
in order of decreasing u.f ( as computed in line 1 )
4 output the vertices of each tree in the depth-first forest formed in line 3 as a
separate strongly-connected-componet
三.算法复杂度
邻接表:O(V+E)
邻接矩阵:O(V2)
该算法在实际操作中要比Tarjan算法要慢
四.算法模板&注释代码
#include "cstdio"
#include "iostream"
#include "algorithm" using namespace std ; const int maxN = , maxM = ; struct Kosaraju { int to , next ; } ; Kosaraju E[ ][ maxM ] ;
bool vis[ maxN ];
int head[ ][ maxN ] , cnt[ ] , ord[maxN] , size[maxN] ,color[ maxN ]; int tot , dfs_num , col_num , N , M ; void Add_Edge( int x , int y , int _ ){//建图
E[ _ ][ ++cnt[ _ ] ].to = y ;
E[ _ ][ cnt[ _ ] ].next = head[ _ ][ x ] ;
head[ _ ][ x ] = cnt[ _ ] ;
} void DFS_1 ( int x , int _ ){
dfs_num ++ ;//发现时间
vis[ x ] = true ;
for ( int i = head[ _ ][ x ] ; i ; i = E[ _ ][ i ].next ) {
int temp = E[ _ ][ i ].to;
if(vis[ temp ] == false) DFS_1 ( temp , _ ) ;
}
ord[(N<<) + - (++dfs_num) ] = x ;//完成时间加入栈
} void DFS_2 ( int x , int _ ){
size[ tot ]++ ;// 强连通分量的大小
vis[ x ] = false ;
color[ x ] = col_num ;//染色
for ( int i=head[ _ ][ x ] ; i ; i = E[ _ ][ i ].next ) {
int temp = E[ _ ][ i ].to;
if(vis[temp] == true) DFS_2(temp , _);
}
} int main ( ){
scanf("%d %d" , &N , &M );
for ( int i= ; i<=M ; ++i ){
int _x , _y ;
scanf("%d %d" , &_x , &_y ) ;
Add_Edge( _x , _y , ) ;//原图的邻接表
Add_Edge( _y , _x , ) ;//逆图的邻接表
}
for ( int i= ; i<=N ; ++i )
if ( vis[ i ]==false )
DFS_1 ( i , ) ;//原图的DFS for ( int i = ; i<=( N << ) ; ++i ) {
if( ord[ i ]!= && vis[ ord[ i ] ] ){
tot ++ ; //强连通分量的个数
col_num ++ ;//染色的颜色
DFS_2 ( ord[ i ] , ) ;
}
} for ( int i= ; i<=tot ; ++i )
printf ("%d ",size[ i ]);
putchar ('\n');
for ( int i= ; i<=N ; ++i )
printf ("%d ",color[ i ]);
return ;
}
2016-09-18 00:16:19
(完)
Kosaraju 算法的更多相关文章
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- Kosaraju 算法查找强连通分支
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...
- 半连通分量--Tarjan/Kosaraju算法
一个有向图称为半连通(Semi-Connected),满足:对于图中任两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. 若满足,则称G’是G的一个导出子图. 若G’是G的导出子图,且G’半 ...
- Kosaraju算法---强联通分量
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组). 算法描叙: :对 ...
- codevs1506传话(kosaraju算法)
- - - - - - - - 一个()打成[] 看了一晚上..... /* 求强连通分量 kosaraju算法 边表存图 正反构造两个图 跑两边 分别记下入栈顺序 和每个强连通分量的具体信息 */ ...
- Kosaraju算法解析: 求解图的强连通分量
Kosaraju算法解析: 求解图的强连通分量 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 定义 连通分量:在无向图中,即为连 ...
- Kosaraju算法详解
Kosaraju算法是干什么的? Kosaraju算法可以计算出一个有向图的强连通分量 什么是强连通分量? 在一个有向图中如果两个结点(结点v与结点w)在同一个环中(等价于v可通过有向路径到达w,w也 ...
- 7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版
课本源码部分 第7章 图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版 源码使用说明 链接☛☛☛ <数据结构-C语言版>(严 ...
- Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...
随机推荐
- 无废话ExtJs 入门教程十[单选组:RadioGroup、复选组:CheckBoxGroup]
无废话ExtJs 入门教程十[单选组:RadioGroup.复选组:CheckBoxGroup] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在表单里加了个一个单选组,一个复 ...
- 无废话ExtJs 入门教程三[窗体:Window组件]
无废话ExtJs 入门教程三[窗体:Window组件] extjs技术交流,欢迎加群(201926085) 1.代码如下: 1 <!DOCTYPE html PUBLIC "-//W3 ...
- [LeetCode] Maximal Rectangle
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...
- BZOJ1004 [HNOI2008]Cards(Polya计数)
枚举每个置换,求在每个置换下着色不变的方法数,先求出每个循环的大小,再动态规划求得使用给定的颜色时对应的方法数. dp[i][j][k]表示处理到当前圈时R,B,G使用量为i,j,k时的方法数,背包思 ...
- Ubuntu / Win7 安装db2 v10.5
抓紧下载v10.5fp1_linuxx64_expc.tar.gz到~/Downloads/java_softcd java_softtar xf v10.5fp1_linuxx64_expc.tar ...
- IOS 100 - 1 开工闲聊
1 前言 现在的行情,作为码农,ios 普遍比c# 的待遇好上不少.感觉就如清洁工人,扫厕所干的再高效和干净,一个月就那么点微薄的收入.当然你可以选择去香港打扫卫生间,那里的行情据说清洁工也破万了.说 ...
- hdu 4033 2011成都赛区网络赛 余弦定理+二分 **
二分边长,判断最后内角和是否为2pi,注意l与r的选取,保证能组成三角形 #include<cstdio> #include<iostream> #include<alg ...
- 进程控制理论,王明学learn
进程控制理论 一.进程 进程是一个具有一定独立功能程序的一次运行活动. 1.1进程特点 1.动态性:进程的实质是程序的一次执行过程,进程是动态产生,动态消亡的 2.并发性:任何进程都可以同其他进程一起 ...
- C++模板【转】
1. 模板的概念. 我们已经学过重载(Overloading),对重载函数而言,C++的检查机制能通过函数参数的不同及所属类的不同.正确的调用重载函数.例如,为求两个数的最大值,我们定义MAX()函数 ...
- Intent传递类实例
发送方: Intent intent = new Intent(); intent.setClass(mContext, HomeDetailReportActivity.class); intent ...