Kosaraju 算法

一.算法简介

在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量。它利用了一个事实,逆图(与各边方向相同的图形反转, transpose graph)有相同的强连通分量的原始图。

有关强连通分量的介绍在之前Tarjan 算法中:Tarjan Algorithm

逆图(Tranpose Graph ):

我们对逆图定义如下:

GT=(V, ET),ET={(u, v):(v, u)∈E}}

上图是有向图G , 和图G的逆图 G

摘录维基百科上对Kosaraju Algorithm 的描述:

(取自https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm)

  • For each vertex u of the graph, mark u as unvisited. Let L be empty.
  • For each vertex u of the graph do Visit(u), where Visit(u) is the recursive subroutine:
    If u is unvisited then:
    1. Mark u as visited.
    2. For each out-neighbour v of u, do Visit(v).
    3. Prepend u to L.
    Otherwise do nothing.
  • For each element u of L in order, do Assign(u,u) where Assign(u,root) is the recursive subroutine:
    If u has not been assigned to a component then:
    1. Assign u as belonging to the component whose root is root.
    2. For each in-neighbour v of u, do Assign(v,root).
    Otherwise do nothing.

通过以上的描述我们发现,Kosaraju 算法就是分别对原图G 和它的逆图 GT 进行两遍DFS,即:

1).对原图G进行深度优先搜索,找出每个节点的完成时间(时间戳)

2).选择完成时间较大的节点开始,对逆图GT 搜索,能够到达的点构成一个强连通分量

3).如果所有节点未被遍历,重复2). ,否则算法结束;

二.算法图示

上图是对图G,进行一遍DFS的结果,每个节点有两个时间戳,即节点的发现时间u.d和完成时间u.f

我们将完成时间较大的,按大小加入堆栈

1)每次从栈顶取出元素

2)检查是否被访问过

3)若没被访问过,以该点为起点,对逆图进行深度优先遍历

4)否则返回第一步,直到栈空为止

[ATTENTION] : 对逆图搜索时,从一个节点开始能搜索到的最大区块就是该点所在的强连通分量。

从节点1出发,能走到  2 ,3,4 , 所以{1 , 2 , 3 , 4 }是一个强连通分量

从节点5出发,无路可走,所以{ 5 }是一个强连通分量

从节点6出发,无路可走,所以{ 6 }是一个强连通分量

自此Kosaraju Algorithm完毕,这个算法只需要两遍DFS即可,是一个比较易懂的求强连通分量的算法。

STRONG-CONNECTED-COMPONENTS ( GRAPH G )
1 call DFS(G) to compute finishing times u.f for each vertex u
2 compute GT
3 call DFS (GT) , but in the main loop of DFS , consider the vertices
         in order of decreasing u.f ( as computed in line 1 )
4 output the vertices of each tree in the depth-first forest formed in line 3 as a
         separate strongly-connected-componet

三.算法复杂度

邻接表:O(V+E)

邻接矩阵:O(V2)

该算法在实际操作中要比Tarjan算法要慢

四.算法模板&注释代码

 #include "cstdio"
#include "iostream"
#include "algorithm" using namespace std ; const int maxN = , maxM = ; struct Kosaraju { int to , next ; } ; Kosaraju E[ ][ maxM ] ;
bool vis[ maxN ];
int head[ ][ maxN ] , cnt[ ] , ord[maxN] , size[maxN] ,color[ maxN ]; int tot , dfs_num , col_num , N , M ; void Add_Edge( int x , int y , int _ ){//建图
E[ _ ][ ++cnt[ _ ] ].to = y ;
E[ _ ][ cnt[ _ ] ].next = head[ _ ][ x ] ;
head[ _ ][ x ] = cnt[ _ ] ;
} void DFS_1 ( int x , int _ ){
dfs_num ++ ;//发现时间
vis[ x ] = true ;
for ( int i = head[ _ ][ x ] ; i ; i = E[ _ ][ i ].next ) {
int temp = E[ _ ][ i ].to;
if(vis[ temp ] == false) DFS_1 ( temp , _ ) ;
}
ord[(N<<) + - (++dfs_num) ] = x ;//完成时间加入栈
} void DFS_2 ( int x , int _ ){
size[ tot ]++ ;// 强连通分量的大小
vis[ x ] = false ;
color[ x ] = col_num ;//染色
for ( int i=head[ _ ][ x ] ; i ; i = E[ _ ][ i ].next ) {
int temp = E[ _ ][ i ].to;
if(vis[temp] == true) DFS_2(temp , _);
}
} int main ( ){
scanf("%d %d" , &N , &M );
for ( int i= ; i<=M ; ++i ){
int _x , _y ;
scanf("%d %d" , &_x , &_y ) ;
Add_Edge( _x , _y , ) ;//原图的邻接表
Add_Edge( _y , _x , ) ;//逆图的邻接表
}
for ( int i= ; i<=N ; ++i )
if ( vis[ i ]==false )
DFS_1 ( i , ) ;//原图的DFS for ( int i = ; i<=( N << ) ; ++i ) {
if( ord[ i ]!= && vis[ ord[ i ] ] ){
tot ++ ; //强连通分量的个数
col_num ++ ;//染色的颜色
DFS_2 ( ord[ i ] , ) ;
}
} for ( int i= ; i<=tot ; ++i )
printf ("%d ",size[ i ]);
putchar ('\n');
for ( int i= ; i<=N ; ++i )
printf ("%d ",color[ i ]);
return ;
}

2016-09-18 00:16:19

(完)

Kosaraju 算法的更多相关文章

  1. Kosaraju 算法检测有向图的强连通性

    给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...

  2. Kosaraju 算法查找强连通分支

    有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...

  3. 半连通分量--Tarjan/Kosaraju算法

    一个有向图称为半连通(Semi-Connected),满足:对于图中任两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. 若满足,则称G’是G的一个导出子图. 若G’是G的导出子图,且G’半 ...

  4. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  5. codevs1506传话(kosaraju算法)

    - - - - - - - - 一个()打成[] 看了一晚上..... /* 求强连通分量 kosaraju算法 边表存图 正反构造两个图 跑两边 分别记下入栈顺序 和每个强连通分量的具体信息 */ ...

  6. Kosaraju算法解析: 求解图的强连通分量

    Kosaraju算法解析: 求解图的强连通分量 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 定义 连通分量:在无向图中,即为连 ...

  7. Kosaraju算法详解

    Kosaraju算法是干什么的? Kosaraju算法可以计算出一个有向图的强连通分量 什么是强连通分量? 在一个有向图中如果两个结点(结点v与结点w)在同一个环中(等价于v可通过有向路径到达w,w也 ...

  8. 7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第7章  图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版>(严 ...

  9. Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...

随机推荐

  1. ****php:require_once(dirname(__FILE__)."/./config_uc.php");

    Q:麻烦清楚地讲解一下这句的意思,具体路径是怎样的,这个文解在 根目录,如果我想放在根目录下的tieba文件夹里,应该怎么修改/./ 这个是表示什么? A: require_once(dirname( ...

  2. 无废话Android之listview入门,自定义的数据适配器、采用layoutInflater打气筒创建一个view对象、常用数据适配器ArrayAdapter、SimpleAdapter、使用ContentProvider(内容提供者)共享数据、短信的备份、插入一条记录到系统短信应用(3)

    1.listview入门,自定义的数据适配器 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/and ...

  3. 安装oracle 12c RAC遇到的一些问题

    (1) 安装grid软件,停止在38%很长时间不动,日志显示正常   解决方法: 由于是虚拟机安装,设置的内存为600M,关闭虚拟机,把内存调成1GB,问题解决~在38%Linking RMAN Ut ...

  4. Jquery easy UI 上中下三栏布局 分类: ASP.NET 2015-02-06 09:19 368人阅读 评论(0) 收藏

    效果图: 源代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w ...

  5. VS2010 水晶报表的使用

    在VS2010中新建一个“Windows 窗体应用程序”项目,在该项目中添加一个水晶报表“CrystalReport1.rpt”,然后在项目上点击鼠标右键属性,将“目标框架”改为“.Net Frame ...

  6. Activity有四种加载模式(转)

    Activity有四种加载模式: standard singleTop singleTask singleInstance 在多Activity开发中,有可能是自己应用之间的Activity跳转,或者 ...

  7. 在Salesforce中添加Workflow Rule

    在Salesforce中可以添加Workflow Rule来执行特定的动作,比如说:当Object的某个字段发生变化时,根据变化的值去修改其他field,和Trigger的功能很类似,不过Trigge ...

  8. sidt十六进制代码

    00121453 0F010D 40441200 sidt fword ptr ds:[gliu]0012145A 0F014D B0 sidt fword ptr ss:[ebp-0x50]0012 ...

  9. 解决ScrollView嵌到listView冲突问题

    方法一: 把下面的方法放在绑定适配器操作的下面就行. /** * 重新计算ListView的高度,解决ScrollView和ListView两个View都有滚动的效果,在嵌套使用时起冲突的问题 * @ ...

  10. JAVA 加减乘除

    package homework; import javax.swing.JOptionPane; public class suanshu { public static void main(Str ...